Suppr超能文献

合成生物学方法在提高光合作用中的应用。

Synthetic biology approaches for improving photosynthesis.

机构信息

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.

出版信息

J Exp Bot. 2019 Mar 11;70(5):1425-1433. doi: 10.1093/jxb/erz029.

Abstract

The phenomenal increase in agricultural yields that we have witnessed in the last century has slowed down as we approach the limits of selective breeding and optimization of cultivation techniques. To support the yield increase required to feed an ever-growing population, we will have to identify new ways to boost the efficiency with which plants convert light into biomass. This challenge could potentially be tackled using state-of-the-art synthetic biology techniques to rewrite plant carbon fixation. In this review, we use recent studies to discuss and demonstrate different approaches for enhancing carbon fixation, including engineering Rubisco for higher activity, specificity, and activation; changing the expression level of enzymes within the Calvin cycle to avoid kinetic bottlenecks; introducing carbon-concentrating mechanisms such as inorganic carbon transporters, carboxysomes, and C4 metabolism; and rewiring photorespiration towards more energetically efficient routes or pathways that do not release CO2. We conclude by noting the importance of prioritizing and combining different approaches towards continuous and sustainable increase of plant productivities.

摘要

在上个世纪,我们见证了农业产量的显著增长,但随着选择性育种和耕作技术优化的接近极限,这种增长已经放缓。为了支持养活不断增长的人口所需的产量增长,我们将不得不寻找新的方法来提高植物将光能转化为生物质的效率。这项挑战可以通过使用最先进的合成生物学技术来重写植物的碳固定来解决。在这篇综述中,我们使用最近的研究来讨论和展示不同的方法来提高碳固定,包括提高 Rubisco 的活性、特异性和激活效率;改变卡尔文循环中的酶的表达水平以避免动力学瓶颈;引入碳浓缩机制,如无机碳转运蛋白、羧化体和 C4 代谢;以及将光呼吸重新布线为更节能的途径或不释放 CO2 的途径。最后,我们注意到优先考虑并结合不同方法以持续和可持续地提高植物生产力的重要性。

相似文献

4
Strategies for engineering C(4) photosynthesis.C(4) 光合作用的工程策略。
J Plant Physiol. 2013 Mar 1;170(4):378-88. doi: 10.1016/j.jplph.2012.10.011. Epub 2012 Dec 13.
5
Engineering carbon fixation with artificial protein organelles.利用人工蛋白质细胞器进行碳固定工程。
Curr Opin Biotechnol. 2017 Aug;46:42-50. doi: 10.1016/j.copbio.2017.01.004. Epub 2017 Jan 23.
7
Daring metabolic designs for enhanced plant carbon fixation.大胆的代谢设计,增强植物碳固定。
Plant Sci. 2018 Aug;273:71-83. doi: 10.1016/j.plantsci.2017.12.007. Epub 2017 Dec 21.
8
Engineering Improved Photosynthesis in the Era of Synthetic Biology.工程改造合成生物学时代的光合作用。
Plant Commun. 2020 Feb 13;1(2):100032. doi: 10.1016/j.xplc.2020.100032. eCollection 2020 Mar 9.
10
Design and in vitro realization of carbon-conserving photorespiration.设计并在体外实现节约碳的光呼吸。
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11455-E11464. doi: 10.1073/pnas.1812605115. Epub 2018 Nov 20.

引用本文的文献

4
Synthetic biology in plants.植物合成生物学
Plant Biotechnol (Tokyo). 2024 Sep 25;41(3):173-193. doi: 10.5511/plantbiotechnology.24.0630b.
9
Engineering Rubisco to enhance CO utilization.改造核酮糖-1,5-二磷酸羧化酶以提高二氧化碳的利用效率
Synth Syst Biotechnol. 2023 Dec 27;9(1):55-68. doi: 10.1016/j.synbio.2023.12.006. eCollection 2024 Mar.
10

本文引用的文献

2
Design and in vitro realization of carbon-conserving photorespiration.设计并在体外实现节约碳的光呼吸。
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11455-E11464. doi: 10.1073/pnas.1812605115. Epub 2018 Nov 20.
5
Daring metabolic designs for enhanced plant carbon fixation.大胆的代谢设计,增强植物碳固定。
Plant Sci. 2018 Aug;273:71-83. doi: 10.1016/j.plantsci.2017.12.007. Epub 2017 Dec 21.
6
Advanced editing of the nuclear and plastid genomes in plants.植物核基因组和质体基因组的高级编辑。
Plant Sci. 2018 Aug;273:42-49. doi: 10.1016/j.plantsci.2018.02.025. Epub 2018 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验