Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
J Exp Bot. 2019 Mar 11;70(5):1425-1433. doi: 10.1093/jxb/erz029.
The phenomenal increase in agricultural yields that we have witnessed in the last century has slowed down as we approach the limits of selective breeding and optimization of cultivation techniques. To support the yield increase required to feed an ever-growing population, we will have to identify new ways to boost the efficiency with which plants convert light into biomass. This challenge could potentially be tackled using state-of-the-art synthetic biology techniques to rewrite plant carbon fixation. In this review, we use recent studies to discuss and demonstrate different approaches for enhancing carbon fixation, including engineering Rubisco for higher activity, specificity, and activation; changing the expression level of enzymes within the Calvin cycle to avoid kinetic bottlenecks; introducing carbon-concentrating mechanisms such as inorganic carbon transporters, carboxysomes, and C4 metabolism; and rewiring photorespiration towards more energetically efficient routes or pathways that do not release CO2. We conclude by noting the importance of prioritizing and combining different approaches towards continuous and sustainable increase of plant productivities.
在上个世纪,我们见证了农业产量的显著增长,但随着选择性育种和耕作技术优化的接近极限,这种增长已经放缓。为了支持养活不断增长的人口所需的产量增长,我们将不得不寻找新的方法来提高植物将光能转化为生物质的效率。这项挑战可以通过使用最先进的合成生物学技术来重写植物的碳固定来解决。在这篇综述中,我们使用最近的研究来讨论和展示不同的方法来提高碳固定,包括提高 Rubisco 的活性、特异性和激活效率;改变卡尔文循环中的酶的表达水平以避免动力学瓶颈;引入碳浓缩机制,如无机碳转运蛋白、羧化体和 C4 代谢;以及将光呼吸重新布线为更节能的途径或不释放 CO2 的途径。最后,我们注意到优先考虑并结合不同方法以持续和可持续地提高植物生产力的重要性。