Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
Genome Biol. 2018 Aug 20;19(1):119. doi: 10.1186/s13059-018-1503-4.
Population genetic theory predicts that rapid adaptation is largely driven by complex traits encoded by many loci of small effect. Because large-effect loci are quickly fixed in natural populations, they should not contribute much to rapid adaptation.
To investigate the genetic architecture of thermal adaptation - a highly complex trait - we performed experimental evolution on a natural Drosophila simulans population. Transcriptome and respiration measurements reveal extensive metabolic rewiring after only approximately 60 generations in a hot environment. Analysis of genome-wide polymorphisms identifies two interacting selection targets, Sestrin and SNF4Aγ, pointing to AMPK, a central metabolic switch, as a key factor for thermal adaptation.
Our results demonstrate that large-effect loci segregating at intermediate allele frequencies can allow natural populations to rapidly respond to selection. Because SNF4Aγ also exhibits clinal variation in various Drosophila species, we suggest that this large-effect polymorphism is maintained by temporal and spatial temperature variation in natural environments.
群体遗传学理论预测,快速适应主要由许多小效应位点编码的复杂性状驱动。由于大效应位点在自然种群中很快被固定,它们不应对快速适应做出太大贡献。
为了研究热适应的遗传结构——一个高度复杂的性状——我们对一个自然的果蝇 simulans 种群进行了实验进化。在热环境中仅经过大约 60 代,转录组和呼吸测量就显示出广泛的代谢重布线。对全基因组多态性的分析确定了两个相互作用的选择靶标,Sestrin 和 SNF4Aγ,指向 AMPK,一个中央代谢开关,作为热适应的关键因素。
我们的结果表明,在中间等位基因频率下分离的大效应位点可以使自然种群快速响应选择。由于 SNF4Aγ 在各种果蝇物种中也表现出渐变相,我们认为这种大效应多态性是由自然环境中时间和空间温度变化维持的。