Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.
Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.
Sci Total Environ. 2019 May 1;663:518-526. doi: 10.1016/j.scitotenv.2019.01.282. Epub 2019 Jan 25.
Besides their economic value, engineered inorganic nanoparticles (EINPs) may pose a risk for the integrity of ecosystems. Among EINPs, titanium dioxide (nTiO) is frequently used and released into surface waters in the μg range. There, nTiO interacts with environmental factors, influencing its potential to cause adverse effects on aquatic life. Although factors like ultra violet (UV) light and natural organic matter (NOM) are considered as ubiquitous, their joint impact on nTiO-induced toxicity is poorly understood. This study addressed the acute toxicity of nTiO (P25; 0.00-64.00 mg/L; ~60 nm) at ambient UV light (0.00-5.20 W UVA/m) and NOM levels (seaweed extract; 0.00-4.00 mg TOC/L), using the immobility of Daphnia magna as response variable. Confirming previous studies, effects caused by nTiO were elevated with increasing UV radiation (up to ~280 fold) and mitigated by higher NOM levels (up to ~12 fold), possibly due to reduced reactive oxygen species (ROS; measured as OH radicals) formation at lower UV intensities. However, contradicting to former studies, nTiO-mediated ROS formation was not proportional to increasing NOM levels: lower concentrations (0.04-0.40 mg TOC/L) slightly diminished, whereas a higher concentration (4.00 mg TOC/L) promoted the ROS quantity, irrespective of UV intensity. Measured ROS levels do not fully explain the observed nTiO-induced toxicity, whereas increasing acetylcholinesterase and glutathione-S-transferase activities in daphnids (in presence of 8.00 mg/L nTiO and elevated UV intensity) point towards neurotoxic and oxidative stress as a driver for the observed effects. Hence, despite higher OH levels in the treatments where 4.00 mg TOC/L were present, NOM was still capable of reducing nTiO-induced stress and ultimately adverse effects in aquatic life.
除了经济价值外,工程无机纳米粒子 (EINPs) 可能会对生态系统的完整性构成威胁。在 EINPs 中,二氧化钛 (nTiO) 被广泛应用并以微克级别的浓度释放到地表水中。在那里,nTiO 与环境因素相互作用,影响其对水生生物产生不利影响的潜力。尽管紫外线 (UV) 光和天然有机物 (NOM) 等因素被认为是普遍存在的,但它们对 nTiO 诱导毒性的联合影响仍知之甚少。本研究在环境 UV 光 (0.00-5.20 W UVA/m) 和 NOM 水平 (海藻提取物;0.00-4.00 mg TOC/L) 下,使用大型溞的不活动作为响应变量,研究了 nTiO (P25;0.00-64.00 mg/L;~60nm) 的急性毒性。与先前的研究一致,nTiO 引起的影响随着 UV 辐射的增加而增加(高达约 280 倍),并随着 NOM 水平的增加而减轻(高达约 12 倍),这可能是由于在较低的 UV 强度下形成的活性氧物质 (ROS;以羟基自由基测量) 减少。然而,与先前的研究相反,nTiO 介导的 ROS 形成与 NOM 水平的增加不成比例:较低的浓度(0.04-0.40 mg TOC/L)略有减少,而较高的浓度(4.00 mg TOC/L)促进了 ROS 数量,而与 UV 强度无关。测量的 ROS 水平不能完全解释观察到的 nTiO 诱导的毒性,而在存在 8.00 mg/L nTiO 和升高的 UV 强度的情况下,大型溞中乙酰胆碱酯酶和谷胱甘肽-S-转移酶活性的增加表明神经毒性和氧化应激是观察到的影响的驱动因素。因此,尽管在存在 4.00 mg TOC/L 的处理中 OH 水平较高,但 NOM 仍能够减轻 nTiO 诱导的应激和水生生物的最终不利影响。