Suppr超能文献

通过对大型医院活动数据集进行多层次建模,确定精神共病对心脏患者住院的影响。

Determining the Influence of Psychiatric Comorbidity on Hospital Admissions in Cardiac Patients Through Multilevel Modelling of a Large Hospital Activity Data Set.

机构信息

College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia; Country Health South Australia, Adelaide, SA, Australia.

College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia; Country Health South Australia, Adelaide, SA, Australia.

出版信息

Heart Lung Circ. 2020 Feb;29(2):211-215. doi: 10.1016/j.hlc.2018.12.011. Epub 2019 Jan 28.

Abstract

BACKGROUND

Increasingly, big data derived from administrative hospital records can be subject to analytics to provide clinical insights. The aim of this study was to determine the impact of psychiatric comorbidity on length of hospital stay and number of hospital admissions in cardiac patients utilising routinely collected hospitalisation records.

METHODS

We routinely collected clinical and socio-demographic variables extracted from 37,580 cardiac patients, between 18 and 65 years old, admitted to South Australian hospitals between 2001/02 to 2010/11 financial years with cardiac diagnoses used to derive patient level and separation level variables used in the modelling. Multi-level models were constructed to analyse the impact of psychiatric comorbidity on both length of stay and the total number of hospitalisations, allowing for interactions between socioeconomic status and the burden of disease. Possible confounders for these models were, sex, age, indigenous status, country of birth, and rural status.

RESULTS

For cardiac patients a mental health diagnosis was associated with an increase of 12.5% in the length of stay, and an increase in the number of stays by 20.0%.

CONCLUSIONS

This study demonstrates the potential utility of routinely collected hospitalisation records to demonstrate the impact of psychiatric comorbidity on health service utilisation.

摘要

背景

越来越多的来自医院管理记录的大数据可以通过分析提供临床见解。本研究的目的是利用常规收集的住院记录,确定精神共病对心脏患者住院时间和住院次数的影响。

方法

我们常规收集了年龄在 18 至 65 岁之间的 37580 名心脏患者的临床和社会人口统计学变量,这些患者在 2001/02 至 2010/11 财政年度期间被收入南澳大利亚的医院。使用患者水平和分离水平变量来推导患者水平和分离水平变量,这些变量用于建模。构建多层次模型来分析精神共病对住院时间和总住院次数的影响,同时考虑社会经济地位和疾病负担之间的相互作用。这些模型的可能混杂因素包括性别、年龄、土著身份、出生地和农村状况。

结果

对于心脏患者,心理健康诊断与住院时间延长 12.5%和住院次数增加 20.0%相关。

结论

本研究表明,常规收集的住院记录可用于证明精神共病对卫生服务利用的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验