Plant and Microbial Biology Department, The University of California, Berkeley, California 94720.
Plant and Microbial Biology Department, The University of California, Berkeley, California 94720
Genetics. 2019 Apr;211(4):1255-1267. doi: 10.1534/genetics.118.301780. Epub 2019 Feb 4.
Cells rarely exist alone, which drives the evolution of diverse mechanisms for identifying and responding appropriately to the presence of other nearby cells. Filamentous fungi depend on somatic cell-to-cell communication and fusion for the development and maintenance of a multicellular, interconnected colony that is characteristic of this group of organisms. The filamentous fungus is a model for investigating the mechanisms of somatic cell-to-cell communication and fusion. cells chemotropically grow toward genetically similar cells, which ultimately make physical contact and undergo cell fusion. Here, we describe the development of a reporter system that differentiates whether genes function upstream or downstream of a conserved MAP kinase (MAPK) signaling complex, by using a set of mutants required for communication and cell fusion. The vast majority of these mutants are deficient for self-fusion and for fusion when paired with wild-type cells. However, the Δ mutant is unique in that it fails to undergo self-fusion, but chemotropic interactions and cell fusion are restored in Δ + wild-type interactions. In genetically dissimilar cells, chemotropic interactions are regulated by genetic differences at and , which regulate prefusion non-self recognition; cells with dissimilar and alleles show greatly reduced cell-fusion frequencies. Here, we show that HAM-11 functions in parallel with the DOC-1 and DOC-2 proteins to regulate the activity of the MAPK signaling complex. Together, our data support a model of integrated self and non-self recognition processes that modulate somatic cell-to-cell communication in .
细胞很少单独存在,这促使其进化出多种识别和适当响应附近其他细胞存在的机制。丝状真菌依赖体细胞间的通讯和融合来发育和维持其多细胞、相互连接的菌落,这是该类生物的特征。丝状真菌是研究体细胞间通讯和融合机制的模式生物。细胞向遗传上相似的细胞化学趋化性生长,最终使它们物理接触并发生细胞融合。在这里,我们描述了一个报告基因系统的开发,该系统通过使用一组用于通讯和细胞融合的突变体,区分基因是否在保守 MAP 激酶(MAPK)信号复合物的上游或下游起作用。这些突变体中的绝大多数在自身融合和与野生型细胞融合时都存在缺陷。然而,Δ突变体是独特的,因为它不能进行自身融合,但在 Δ+野生型相互作用中,化学趋性相互作用和细胞融合得到恢复。在遗传上不同的细胞中,化学趋性相互作用受 和 基因的遗传差异调节,调节融合前的非自身识别;具有不同 和 等位基因的细胞显示出大大降低的细胞融合频率。在这里,我们表明 HAM-11 与 DOC-1 和 DOC-2 蛋白平行作用,调节 MAPK 信号复合物的活性。总之,我们的数据支持了一个整合的自我和非自我识别过程的模型,该模型调节了丝状真菌中的体细胞间通讯。