文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

富含精氨酸的环肽的二级结构和穿膜能力。

Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers.

机构信息

Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.

Osaka University of Pharmaceutical Sciences, 40-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.

出版信息

Sci Rep. 2019 Feb 4;9(1):1349. doi: 10.1038/s41598-018-38063-8.


DOI:10.1038/s41598-018-38063-8
PMID:30718681
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6362038/
Abstract

Foldamers, which are folded oligomers with well-defined conformations, have been recently reported to have a good cell-penetrating ability. α,α-Disubstituted α-amino acids are one such promising tool for the design of peptide foldamers. Here, we prepared four types of L-arginine-rich nonapeptides containing L-leucine or α,α-disubstituted α-amino acids, and evaluated their secondary structures and cell-penetrating abilities in order to elucidate a correlation between them. Peptides containing α,α-disubstituted α-amino acids had similar resistance to protease digestion but showed different secondary structures. Intracellular uptake assays revealed that the helicity of peptides was important for their cell-penetrating abilities. These findings suggested that a peptide foldamer with a stable helical structure could be promising for the design of cell-penetrating peptides.

摘要

折叠体是具有明确构象的折叠寡聚物,最近有报道称它们具有良好的细胞穿透能力。α,α-二取代的α-氨基酸是设计肽折叠体的一种有前途的工具。在这里,我们制备了四种含有 L-亮氨酸或α,α-二取代的α-氨基酸的富含 L-精氨酸的九肽,并评估了它们的二级结构和细胞穿透能力,以阐明它们之间的相关性。含有α,α-二取代的α-氨基酸的肽对蛋白酶的消化具有相似的抗性,但表现出不同的二级结构。细胞内摄取实验表明,肽的螺旋性对于其细胞穿透能力很重要。这些发现表明,具有稳定螺旋结构的肽折叠体可能是设计细胞穿透肽的有前途的候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/0e13ecd9bd6d/41598_2018_38063_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/9a485875f0b0/41598_2018_38063_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/d6bb2216140e/41598_2018_38063_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/9074a6b12ba3/41598_2018_38063_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/a74cfa7085dd/41598_2018_38063_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/35b878fe1ea7/41598_2018_38063_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/0e13ecd9bd6d/41598_2018_38063_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/9a485875f0b0/41598_2018_38063_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/d6bb2216140e/41598_2018_38063_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/9074a6b12ba3/41598_2018_38063_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/a74cfa7085dd/41598_2018_38063_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/35b878fe1ea7/41598_2018_38063_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/6362038/0e13ecd9bd6d/41598_2018_38063_Fig6_HTML.jpg

相似文献

[1]
Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers.

Sci Rep. 2019-2-4

[2]
Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides.

Bioorg Med Chem. 2023-8-15

[3]
Cell-penetrating helical peptides having l-arginines and five-membered ring α,α-disubstituted α-amino acids.

Bioconjug Chem. 2014-10-15

[4]
[Peptide Foldamers: Structural Control and Cell-penetrating Ability].

Yakugaku Zasshi. 2019

[5]
Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling.

Bioconjug Chem. 2017-7-19

[6]
Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide.

Bioorg Med Chem. 2021-5-15

[7]
Cell-Penetrating Peptide Foldamers: Drug-Delivery Tools.

Chembiochem. 2019-7-9

[8]
De Novo Design of Cell-Penetrating Foldamers.

Chem Rec. 2020-9

[9]
A Helix-Stabilized Cell-Penetrating Peptide as an Intracellular Delivery Tool.

Chembiochem. 2016-1

[10]
Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters.

Bioorg Med Chem. 2017-3-15

引用本文的文献

[1]
Computational Insights into Membrane Disruption by Cell-Penetrating Peptides.

J Chem Inf Model. 2025-2-10

[2]
Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources.

Heliyon. 2024-11-22

[3]
Strategic design of GalNAc-helical peptide ligands for efficient liver targeting.

Chem Sci. 2024-10-21

[4]
Evaluating the Activity and Safety of Modified LfcinB Peptides as Potential Colon Anticancer Agents: Cell Line Studies and Insect-Based Toxicity Assessments.

ACS Omega. 2023-10-4

[5]
Synthesis of α,α-Diaryl-α-amino Acid Precursors by Reaction of Isocyanoacetate Esters with -Quinone Diimides.

Org Lett. 2023-8-4

[6]
Matching amino acids membrane preference profile to improve activity of antimicrobial peptides.

Commun Biol. 2022-11-8

[7]
Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides.

Int J Mol Sci. 2022-8-12

[8]
Interaction of Arginine-Rich Cell-Penetrating Peptides with an Artificial Neuronal Membrane.

Cells. 2022-5-13

[9]
Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery.

Pharmaceutics. 2021-12-29

[10]
A naphthalimide-based peptide conjugate for concurrent imaging and apoptosis induction in cancer cells by utilizing endogenous hydrogen sulfide.

Chem Sci. 2021-11-17

本文引用的文献

[1]
Cell-Penetrating Peptides Using Cyclic α,α-Disubstituted α-Amino Acids with Basic Functional Groups.

ACS Biomater Sci Eng. 2018-4-9

[2]
Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling.

Bioconjug Chem. 2017-7-19

[3]
Current Understanding of Direct Translocation of Arginine-Rich Cell-Penetrating Peptides and Its Internalization Mechanisms.

Chem Pharm Bull (Tokyo). 2016

[4]
Design of cyclic RGD-conjugated Aib-containing amphipathic helical peptides for targeted delivery of small interfering RNA.

Bioorg Med Chem. 2016-9-15

[5]
Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids.

Bioorg Med Chem. 2016-6-15

[6]
Foldamer-mediated manipulation of a pre-amyloid toxin.

Nat Commun. 2016-4-25

[7]
A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery.

Sci Rep. 2016-1-27

[8]
A Helix-Stabilized Cell-Penetrating Peptide as an Intracellular Delivery Tool.

Chembiochem. 2016-1

[9]
A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA.

Angew Chem Int Ed Engl. 2015-8-5

[10]
Plasmid DNA delivery using fluorescein-labeled arginine-rich peptides.

Bioorg Med Chem. 2015-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索