Suppr超能文献

通过在双途径之间回收氧化还原辅酶,代谢工程化的大肠杆菌生产异戊二烯和 1,3-丙二醇的能力得到提高。

Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways.

机构信息

CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Appl Microbiol Biotechnol. 2019 Mar;103(6):2597-2608. doi: 10.1007/s00253-018-09578-x. Epub 2019 Feb 5.

Abstract

The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.

摘要

微生物异戊二烯的生物合成是一种很有前途的绿色途径。然而,由于甲羟戊酸(MVA)途径会产生过多的 NAD(P)H,将更多的葡萄糖转化为 CO 或不需要的还原副产物,因此异戊二烯的产量有限。甘油生产 1,3-丙二醇(1,3-PDO)是一个典型的 NAD(P)H 消耗过程,这将 1,3-PDO 的产量限制在~0.7 mol/mol。在这项研究中,我们提出了一种通过将异戊二烯生产与 1,3-PDO 发酵相耦合来平衡氧化还原辅因子的策略。通过在工程大肠杆菌中引入和优化双途径,从异戊二烯途径中回收了约 85.2%的过量 NADPH 用于 1,3-PDO 生产。最佳菌株 G05 在摇瓶发酵条件下同时生产 665.2 mg/L 的异戊二烯和 2532.1 mg/L 的 1,3-PDO。葡萄糖的得率分别为 0.3 mol/mol 和 1.0 mol/mol,相对于任一途径独立生产,分别提高了 3.3 倍和 4.3 倍。由于异戊二烯是一种挥发性有机化合物(VOC),而 1,3-PDO 是从发酵液中分离出来的,因此它们的共生产过程不会增加彼此分离的复杂性或成本。因此,该策略对于开发其他受辅因子浓度驱动的生物燃料和生物化学品的高效生物催化剂将特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验