Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , Shaanxi , P.R. China.
Shaanxi Engineering Research Center of Controllable Neutron Source , Xijing University , Xi'an 710123 , Shaanxi , P.R. China.
Inorg Chem. 2019 Feb 18;58(4):2717-2728. doi: 10.1021/acs.inorgchem.8b03271. Epub 2019 Feb 5.
In the present work, a series of MOF-74 (Ni) materials with narrow micropore channels and abundant unsaturated metal sites was respectively prepared via hydrothermal (HT), condensation reflux (CE), and microwave-assisted (MW) methods. The physicochemical properties of synthesized materials were characterized by powder X-ray diffraction, N-sorption, field-emission scanning electron microscopy, Fourier-transform infrared (FTIR), thermogravimetric (TG)/TG-FTIR, X-ray photoelectron spectroscopy, UV-vis-near infrared, NH/CO-temperature programmed desorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy. Their CO/N adsorption performances were evaluated by isotherm adsorption and dynamic adsorption experiments. We found that the MW is a rapid and facile protocol for the synthesis of MOF-74 (Ni) materials with highly efficient CO capture capacity. The well-shaped MW-140 adsorbent with superior CO adsorption capacity of 5.22 mmol/g at 25 °C can be obtained within 60 min by the MW process, almost 6 times higher than that of the commercial activated carbon (0.89 mmol/g). Results of dynamic adsorption experiments showed that the MW-140 material possesses the highest CO adsorption capacity of 3.37 mmol/g under humid conditions (RH = 90%). Importantly, MW-140 has excellent adsorption stability and recyclability, superior CO capture selectivity (CO/N = 31), and appropriate isosteric heat in CO adsorption (21-38 kJ/mol), making it a promising and potential material for industrial CO capture. Characterization results demonstrated that the high capture capability of MOF-74 (Ni) materials can be attributed to the synergistic effect of abundant narrow micropore channels and rich five-coordinated Ni open metal sites which are beneficial for the trapping of CO molecules.
在本工作中,分别通过水热法(HT)、缩合回流法(CE)和微波辅助法(MW)制备了一系列具有窄微孔通道和丰富不饱和金属位点的 MOF-74(Ni)材料。通过粉末 X 射线衍射、N2 吸附、场发射扫描电子显微镜、傅里叶变换红外光谱(FTIR)、热重/热重-FTIR、X 射线光电子能谱、紫外-可见-近红外光谱、NH3/CO-程序升温脱附以及原位漫反射红外傅里叶变换光谱对合成材料的物理化学性质进行了表征。通过等温吸附和动态吸附实验评估了它们的 CO/N2 吸附性能。结果发现,MW 是一种快速简便的方法,可用于合成具有高效 CO 捕集能力的 MOF-74(Ni)材料。MW 过程可以在 60 min 内制备出具有优异 CO 吸附容量(25°C 时为 5.22 mmol/g)的形状规整的 MW-140 吸附剂,几乎是商业活性炭(0.89 mmol/g)的 6 倍。动态吸附实验结果表明,MW-140 材料在高湿度条件(RH = 90%)下具有最高的 CO 吸附容量(3.37 mmol/g)。重要的是,MW-140 具有优异的吸附稳定性和可循环性、优越的 CO 捕获选择性(CO/N2 = 31)以及 CO 吸附适中的等焓(21-38 kJ/mol),使其成为一种有前途的潜在工业 CO 捕集材料。表征结果表明,MOF-74(Ni)材料具有高捕集能力的原因在于丰富的窄微孔通道和丰富的五配位 Ni 开放金属位点的协同作用,有利于 CO 分子的捕获。