KTH Royal Institute of Technology, Department of Electronics, School of Electrical Engineering and Computer Science, SE-16440 Kista, Sweden.
Nanotechnology. 2019 May 31;30(22):225502. doi: 10.1088/1361-6528/ab0469. Epub 2019 Feb 5.
Silicon nanowires (SiNWs) are a widely used technology for sensing applications. Complementary metal-oxide-semiconductor (CMOS) integration of SiNWs advances lab-on-chip (LOC) technology and offers opportunities for read-out circuit integration, selective and multiplexed detection. In this work, we propose novel scalable pixel-based biosensors exploiting the integration of SiNWs with CMOS in fully-depleted silicon-on-insulator technology. A detailed description of the wafer-scale fabrication of SiNW pixels using the CMOS compatible sidewall-transfer-lithography as an alternative to widely investigated time inefficient e-beam lithography is presented. Each 60 nm wide SiNWs sensor is monolithically connected to a control transistor and novel on-chip fluid-gate forming an individual pixel that can be operated in two modes: biasing transistor frontgate (V ) or substrate backgate (V ). We also present the first electrical results of single N and P-type SiNW pixels. In frontgate mode, N and P-type SiNW pixels exhibit subthreshold slope (SS) ≈ 70-80 mV/dec and I /I ≈ 10. The N-type and P-type pixels have an average threshold voltage, Vth of -1.7 V and 0.85 V respectively. In the backgate mode, N and P-type SiNW pixels exhibit SS ≈ 100-150 mV/dec and I /I ≈ 10. The N and P-type pixels have an average V of 5 V and -2.5 V respectively. Further, the influence of the backgate and frontgate voltage on the switching characteristics of the SiNW pixels is also studied. In the frontgate mode, the V of the SiNW pixels can be tuned at 0.2 V for 1 V change in V for N-type or at -0.2 V for -1 V change in V for P-type pixels. In the backgate mode, it is found that for stable operation of the pixels, the V of the N and P-type transistors must be in the range 0.5-2.5 V and 0 V to -2.5 V respectively.
硅纳米线(SiNWs)是一种广泛应用于传感应用的技术。互补金属氧化物半导体(CMOS)与 SiNWs 的集成推进了片上实验室(LOC)技术的发展,并为读出电路集成、选择性和多路复用检测提供了机会。在这项工作中,我们提出了一种新的基于像素的生物传感器,利用 CMOS 与全耗尽绝缘体上硅技术中的 SiNWs 集成。详细描述了使用 CMOS 兼容的侧壁转移光刻代替广泛研究的耗时低效的电子束光刻来制造 SiNW 像素的晶圆级制造过程。每个 60nm 宽的 SiNW 传感器都与一个控制晶体管和一个新的片上流体门单片连接,形成一个可以在两种模式下工作的单个像素:偏置晶体管前栅极(V )或衬底背栅极(V )。我们还展示了单个 N 型和 P 型 SiNW 像素的第一个电结果。在前栅极模式下,N 型和 P 型 SiNW 像素的亚阈值斜率(SS)约为 70-80 mV/dec 和 I /I 约为 10。N 型和 P 型像素的平均阈值电压 Vth 分别为-1.7V 和 0.85V。在背栅极模式下,N 型和 P 型 SiNW 像素的 SS 约为 100-150 mV/dec 和 I /I 约为 10。N 型和 P 型像素的平均 V 分别为 5V 和-2.5V。此外,还研究了背栅极和前栅极电压对 SiNW 像素开关特性的影响。在前栅极模式下,对于 N 型像素,当 V 改变 1V 时,SiNW 像素的 V 可以在 0.2V 下进行调谐;对于 P 型像素,当 V 改变-1V 时,SiNW 像素的 V 可以在-0.2V 下进行调谐。在背栅极模式下,发现为了稳定像素的工作,N 型和 P 型晶体管的 V 必须分别在 0.5-2.5V 和 0V 到-2.5V 的范围内。