Suppr超能文献

计算筛选药用植物植物化学物质,以发现针对登革热病毒的有效泛血清型抑制剂。

Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus.

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China.

Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.

出版信息

Sci Rep. 2019 Feb 5;9(1):1433. doi: 10.1038/s41598-018-38450-1.

Abstract

Emergence of Dengue as one of the deadliest viral diseases prompts the need for development of effective therapeutic agents. Dengue virus (DV) exists in four different serotypes and infection caused by one serotype predisposes its host to another DV serotype heterotypic re-infection. We undertook virtual ligand screening (VLS) to filter compounds against DV that may inhibit inclusively all of its serotypes. Conserved non-structural DV protein targets such as NS1, NS3/NS2B and NS5, which play crucial role in viral replication, infection cycle and host interaction, were selected for screening of vital antiviral drug leads. A dataset of plant based natural antiviral derivatives was developed. Molecular docking was performed to estimate the spatial affinity of target compounds for the active sites of DV's NS1, NS3/NS2B and NS5 proteins. The drug likeliness of the screened compounds was followed by ADMET analysis whereas the binding behaviors were further elucidated through molecular dynamics (MD) simulation experiments. VLS screened three potential compounds including Canthin-6-one 9-O-beta-glucopyranoside, Kushenol W and Kushenol K which exhibited optimal binding with all the three conserved DV proteins. This study brings forth novel scaffolds against DV serotypes to serve as lead molecules for further optimization and drug development against all DV serotypes with equal effect against multiple disease causing DV proteins. We therefore anticipate that the insights given in the current study could be regarded valuable towards exploration and development of a broad-spectrum natural anti-dengue therapy.

摘要

登革热已成为最致命的病毒性疾病之一,因此需要开发有效的治疗药物。登革病毒(DV)存在四种不同的血清型,一种血清型的感染会使宿主易感染另一种 DV 血清型的异型再感染。我们进行了虚拟配体筛选(VLS),以筛选可能抑制所有血清型的 DV 的化合物。选择保守的非结构 DV 蛋白靶标,如 NS1、NS3/NS2B 和 NS5,它们在病毒复制、感染周期和宿主相互作用中发挥关键作用,用于筛选重要的抗病毒药物先导物。开发了基于植物的天然抗病毒衍生物数据集。进行分子对接以估计目标化合物与 DV 的 NS1、NS3/NS2B 和 NS5 蛋白的活性部位的空间亲和力。对筛选出的化合物进行药物相似性分析,然后通过分子动力学(MD)模拟实验进一步阐明结合行为。VLS 筛选出三种潜在的化合物,包括 Canthin-6-one 9-O-beta-glucopyranoside、Kushenol W 和 Kushenol K,它们与所有三种保守的 DV 蛋白均表现出最佳结合。这项研究提供了针对 DV 血清型的新型支架,可作为针对所有 DV 血清型的先导分子,对多种引起疾病的 DV 蛋白具有同等效果的进一步优化和药物开发。因此,我们预计当前研究提供的见解可被视为探索和开发广谱天然抗登革热疗法的有价值的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/6363786/b336f5238b22/41598_2018_38450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验