文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

登革病毒I型:基于定量构效关系的回归模型开发,用于预测靶向登革病毒非结构(NS)蛋白的抑制剂

i-DENV: development of QSAR based regression models for predicting inhibitors targeting non-structural (NS) proteins of dengue virus.

作者信息

Gautam Sakshi, Thakur Anamika, Kumar Manoj

机构信息

Virology Unit and Bioinformatics Centre, Council of Scientific and Industrial Research (CSIR) - Institute of Microbial Technology, and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

出版信息

Front Pharmacol. 2025 Jun 26;16:1605722. doi: 10.3389/fphar.2025.1605722. eCollection 2025.


DOI:10.3389/fphar.2025.1605722
PMID:40642016
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12241036/
Abstract

INTRODUCTION: Dengue virus (DENV) is a significant global arboviral threat with fatal potential, currently lacking effective antiviral treatments or a universally applicable vaccine. In response to this unmet need, we developed the "i-DENV" web server to facilitate structure-based drug prediction targeting key viral proteins. METHODS: The i-DENV platform focuses on the NS3 protease and NS5 polymerase of DENV using machine learning techniques (MLTs) and quantitative structure-activity relationship (QSAR) modeling. A total of 1213 and 157 unique compounds, along with their IC50 values targeting NS3 and NS5 respectively, were retrieved from the ChEMBL and DenvInD databases. Molecular descriptors and fingerprints were computed and used to train multiple regression-based MLTs, including SVM, RF, kNN, ANN, XGBoost, and DNN, with ten-fold cross-validation. RESULTS: The best-performing SVM and ANN models achieved Pearson correlation coefficients (PCCs) of 0.857/0.862 (NS3) and 0.982/0.964 (NS5) on training/testing sets, and 0.870/0.894 (NS3) and 0.970/0.977 (NS5) on independent validation sets. Model robustness was supported through scatter plots, chemical clustering, statistical analyses, decoy set etc. Virtual screening identified Micafungin, Oritavancin, and Iodixanol as top hits for NS2B/NS3 protease, and Cangrelor, Eravacycline, and Baloxavir marboxil for NS5 polymerase. Molecular docking further confirmed strong binding affinities of these compounds. DISCUSSION: Our findings suggest these repurposed drugs as promising antiviral candidates against DENV. However, further and studies are essential to validate their therapeutic potential. The i-DENV web server is freely accessible at http://bioinfo.imtech.res.in/manojk/idenv/, offering a structure-specific drug prediction platform for DENV research and antiviral drug discovery.

摘要

引言:登革热病毒(DENV)是一种具有致命潜力的重大全球虫媒病毒威胁,目前缺乏有效的抗病毒治疗方法或普遍适用的疫苗。为满足这一未被满足的需求,我们开发了“i-DENV”网络服务器,以促进针对关键病毒蛋白的基于结构的药物预测。 方法:i-DENV平台利用机器学习技术(MLTs)和定量构效关系(QSAR)建模,聚焦于登革热病毒的NS3蛋白酶和NS5聚合酶。分别从ChEMBL和DenvInD数据库中检索了总共1213种和157种独特化合物及其针对NS3和NS5的IC50值。计算分子描述符和指纹,并用于训练基于多元回归的MLTs,包括支持向量机(SVM)、随机森林(RF)、k近邻(kNN)、人工神经网络(ANN)、极端梯度提升(XGBoost)和深度神经网络(DNN),采用十折交叉验证。 结果:表现最佳的SVM和ANN模型在训练/测试集上针对NS3/NS5的皮尔逊相关系数(PCC)分别为0.857/0.862(NS3)和0.982/0.964(NS5),在独立验证集上为0.870/0.894(NS3)和0.970/0.977(NS5)。通过散点图、化学聚类、统计分析、诱饵集等支持了模型的稳健性。虚拟筛选确定米卡芬净、奥利万星和碘克沙醇为NS2B/NS3蛋白酶的顶级命中物,坎格雷洛拉、依拉环素和巴洛沙韦酯为NS5聚合酶的顶级命中物。分子对接进一步证实了这些化合物的强结合亲和力。
讨论:我们的研究结果表明,这些重新利用的药物是有前途的抗登革热病毒候选药物。然而,进一步的研究对于验证它们的治疗潜力至关重要。i-DENV网络服务器可在http://bioinfo.imtech.res.in/manojk/idenv/免费访问,为登革热病毒研究和抗病毒药物发现提供了一个基于结构的药物预测平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/588882649ce5/fphar-16-1605722-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/a7afb46e448d/fphar-16-1605722-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/c7721453c1a2/fphar-16-1605722-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/40f5ceadcc49/fphar-16-1605722-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/948f6840b0f1/fphar-16-1605722-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/2730c44fc2b4/fphar-16-1605722-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/3968be71d346/fphar-16-1605722-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/9f1acb5b2e26/fphar-16-1605722-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/7a20ce5debfd/fphar-16-1605722-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/9b0c09846283/fphar-16-1605722-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/7344c703a263/fphar-16-1605722-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/242ef59d3d5c/fphar-16-1605722-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/588882649ce5/fphar-16-1605722-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/a7afb46e448d/fphar-16-1605722-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/c7721453c1a2/fphar-16-1605722-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/40f5ceadcc49/fphar-16-1605722-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/948f6840b0f1/fphar-16-1605722-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/2730c44fc2b4/fphar-16-1605722-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/3968be71d346/fphar-16-1605722-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/9f1acb5b2e26/fphar-16-1605722-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/7a20ce5debfd/fphar-16-1605722-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/9b0c09846283/fphar-16-1605722-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/7344c703a263/fphar-16-1605722-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/242ef59d3d5c/fphar-16-1605722-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/12241036/588882649ce5/fphar-16-1605722-g012.jpg

相似文献

[1]
i-DENV: development of QSAR based regression models for predicting inhibitors targeting non-structural (NS) proteins of dengue virus.

Front Pharmacol. 2025-6-26

[2]
Exploration of effective pharmacological inhibitors for NS5 protein through computational approach: A strategy to combat the neglected Kyasanur forest disease virus.

PLoS One. 2025-7-10

[3]
Machine learning, network pharmacology, and molecular dynamics reveal potent cyclopeptide inhibitors against dengue virus proteins.

Mol Divers. 2025-8

[4]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[5]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[6]
A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection.

J Virol. 2017-3-29

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[8]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[9]
Systemic pharmacological interventions for Ménière's disease.

Cochrane Database Syst Rev. 2023-2-23

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
Discovery of Potent Dengue Virus NS2B-NS3 Protease Inhibitors Among Glycyrrhizic Acid Conjugates with Amino Acids and Dipeptides Esters.

Viruses. 2024-12-17

[2]
Publisher Correction: The dengue-specific immune response and antibody identification with machine learning.

NPJ Vaccines. 2024-12-9

[3]
Ribavirin inhibits peste des petits ruminants virus proliferation .

Vet Med (Praha). 2023-12-26

[4]
Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing.

Viruses. 2023-12-27

[5]
Exploring the Targets of Dengue Virus and Designs of Potential Inhibitors.

Comb Chem High Throughput Screen. 2024

[6]
DrugBank 6.0: the DrugBank Knowledgebase for 2024.

Nucleic Acids Res. 2024-1-5

[7]
Antiviral effects of micafungin against pteropine orthoreovirus, an emerging zoonotic virus carried by bats.

Virus Res. 2024-1-2

[8]
Finding Lead Compounds for Dengue Antivirals from a Collection of Old Drugs through Target Prediction and Subsequent Validation.

ACS Omega. 2023-8-28

[9]
Ribavirin inhibits the replication of infectious bursal disease virus predominantly through depletion of cellular guanosine pool.

Front Vet Sci. 2023-7-31

[10]
Dengue overview: An updated systemic review.

J Infect Public Health. 2023-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索