Suppr超能文献

人源心脏类器官腔室和组织条源于多能干细胞,作为一种用于变力性反应的双层测定方法。

Human Cardiac Ventricular-Like Organoid Chambers and Tissue Strips From Pluripotent Stem Cells as a Two-Tiered Assay for Inotropic Responses.

机构信息

Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong.

Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Clin Pharmacol Ther. 2019 Aug;106(2):402-414. doi: 10.1002/cpt.1385. Epub 2019 Mar 28.

Abstract

Traditional drug discovery is an inefficient process. Human pluripotent stem cell-derived cardiomyocytes can potentially fill the gap between animal and clinical studies, but conventional two-dimensional cultures inadequately recapitulate the human cardiac phenotype. Here, we systematically examined the pharmacological responses of engineered human ventricular-like cardiac tissue strips (hvCTS) and organoid chambers (hvCOC) to 25 cardioactive compounds covering various drug classes. While hvCTS effectively detected negative and null inotropic effects, the sensitivity to positive inotropes was modest. We further quantified the predictive capacity of hvCTS in a blinded screening, with accuracies for negative, positive, and null inotropic effects at 100%, 86%, and 80%, respectively. Interestingly, hvCOC, with a pro-maturation milieu that yields physiologically complex parameters, displayed enhanced positive inotropy. Based on these results, we propose a two-tiered screening system for avoiding false positives and negatives. Such an approach would facilitate drug discovery by leading to better overall success.

摘要

传统的药物发现是一个效率低下的过程。人类多能干细胞衍生的心肌细胞有可能填补动物和临床研究之间的空白,但传统的二维培养不能充分再现人类心脏表型。在这里,我们系统地研究了工程化的人类心室样心肌组织条(hvCTS)和类器官室(hvCOC)对 25 种心脏活性化合物的药理反应,这些化合物涵盖了各种药物类别。虽然 hvCTS 能够有效地检测到负性和零性变力效应,但对正性变力剂的敏感性适中。我们进一步在盲法筛选中量化了 hvCTS 的预测能力,其对负性、正性和零性变力效应的准确性分别为 100%、86%和 80%。有趣的是,hvCOC 具有促进成熟的环境,可以产生生理上复杂的参数,显示出增强的正性变力作用。基于这些结果,我们提出了一种双层筛选系统,以避免假阳性和假阴性。这种方法将通过提高整体成功率来促进药物发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验