Suppr超能文献

灵活分段线性模型在荟萃分析中剂量-反应关系的研究:方法学、实例和比较。

Flexible piecewise linear model for investigating dose-response relationship in meta-analysis: Methodology, examples, and comparison.

机构信息

Chinese Evidence-Based Medicine Center and Chinese Cochrane Center, West China Hospital, Sichuan University, Chengdu, PR China.

Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

出版信息

J Evid Based Med. 2019 Feb;12(1):63-68. doi: 10.1111/jebm.12339. Epub 2019 Feb 5.

Abstract

OBJECTIVES

Dose-response meta-analysis (DRMA) is widely employed in establishing the potential dose-response relationship between continuous exposures and disease outcomes. However, there is no valid DRMA method readily for discrete exposures, especially when the possible dose-response trend not likely to be linear. We proposed a piecewise linear DRMA model as a solution to this issue.

METHODS

We illustrated the methodology of piecewise linear model in both one-stage DRMA approach and two-stage DRMA approach. The method by testing the equality of slopes of each piecewise was employed to judge if there is "piecewise effect" against a simple linear trend. We then used sleep (continuous exposure) and parity (discrete exposure) data as examples to illustrate how to apply the model in DRMA using the Stata code attached. We also empirically compared the slopes of piecewise linear model with simple linear as well as restricted cubic spline model.

RESULTS

Both one-stage and two-stage piecewise linear DRMA model fitted well in our examples, and the results were similar. Obvious "piecewise effects" were detected in both the two samples by the method we used. In our example, the new model showed a better fitting effect and practical, reliable results compared to the simple linear model, while similar results for to restricted cubic spline model.

CONCLUSION

Piecewise linear function is a valid and straightforward method for DRMA and can be used for discrete exposures, especially when the simple linear function is under fitted. It represents a superior model to linear model in DRMA and may be an alternative model to the nonlinear model.

摘要

目的

剂量-反应荟萃分析(DRMA)广泛应用于建立连续暴露与疾病结局之间潜在的剂量-反应关系。然而,对于离散暴露,目前还没有有效的 DRMA 方法,尤其是当可能的剂量-反应趋势不太可能呈线性时。我们提出了一种分段线性 DRMA 模型来解决这个问题。

方法

我们在单阶段 DRMA 方法和两阶段 DRMA 方法中分别阐述了分段线性模型的方法学。通过测试每个分段斜率的相等性来判断是否存在“分段效应”,而不是简单的线性趋势。然后,我们使用睡眠(连续暴露)和生育次数(离散暴露)数据作为示例,说明如何使用附随的 Stata 代码在 DRMA 中应用该模型。我们还实证比较了分段线性模型与简单线性以及限制三次样条模型的斜率。

结果

单阶段和两阶段分段线性 DRMA 模型在我们的示例中拟合良好,结果相似。我们使用的方法在两个样本中都检测到了明显的“分段效应”。在我们的示例中,与简单线性模型相比,新模型显示出更好的拟合效果和实际、可靠的结果,而与限制三次样条模型的结果相似。

结论

分段线性函数是 DRMA 的一种有效且直接的方法,可用于离散暴露,尤其是当简单线性函数拟合不足时。它在 DRMA 中代表了优于线性模型的模型,并且可能是对非线性模型的替代模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验