Suppr超能文献

在公共卫生研究中使用受限立方样条函数进行剂量-反应分析。

Dose-response analyses using restricted cubic spline functions in public health research.

机构信息

AgroParisTech, UMR 1290 BIOGER-CPP, F-75005 Paris, France.

出版信息

Stat Med. 2010 Apr 30;29(9):1037-57. doi: 10.1002/sim.3841. Epub 2010 Jan 19.

Abstract

Taking into account a continuous exposure in regression models by using categorization, when non-linear dose-response associations are expected, have been widely criticized. As one alternative, restricted cubic spline (RCS) functions are powerful tools (i) to characterize a dose-response association between a continuous exposure and an outcome, (ii) to visually and/or statistically check the assumption of linearity of the association, and (iii) to minimize residual confounding when adjusting for a continuous exposure. Because their implementation with SAS® software is limited, we developed and present here an SAS macro that (i) creates an RCS function of continuous exposures, (ii) displays graphs showing the dose-response association with 95 per cent confidence interval between one main continuous exposure and an outcome when performing linear, logistic, or Cox models, as well as linear and logistic-generalized estimating equations, and (iii) provides statistical tests for overall and non-linear associations. We illustrate the SAS macro using the third National Health and Nutrition Examination Survey data to investigate adjusted dose-response associations (with different models) between calcium intake and bone mineral density (linear regression), folate intake and hyperhomocysteinemia (logistic regression), and serum high-density lipoprotein cholesterol and cardiovascular mortality (Cox model).

摘要

考虑到在回归模型中通过分类进行连续暴露,当预期存在非线性剂量反应关系时,这种方法受到了广泛的批评。作为一种替代方法,限制立方样条(RCS)函数是强大的工具:(i) 描述连续暴露与结果之间的剂量反应关系,(ii) 直观和/或统计检查关联线性的假设,以及 (iii) 当调整连续暴露时最小化残余混杂。由于它们在 SAS®软件中的实现受到限制,我们开发并在这里介绍了一个 SAS 宏,该宏 (i) 创建连续暴露的 RCS 函数,(ii) 显示显示当执行线性、逻辑或 Cox 模型以及线性和逻辑广义估计方程时,一个主要连续暴露与结果之间的剂量反应关系图,以及 95%置信区间,以及 (iii) 提供总体和非线性关联的统计检验。我们使用第三次全国健康和营养检查调查数据来说明 SAS 宏,以研究钙摄入量和骨矿物质密度(线性回归)、叶酸摄入量和高同型半胱氨酸血症(逻辑回归)以及血清高密度脂蛋白胆固醇和心血管死亡率(Cox 模型)之间的调整剂量反应关系(使用不同的模型)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验