Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
J Virol. 2019 Apr 3;93(8). doi: 10.1128/JVI.00149-19. Print 2019 Apr 15.
Upon virus infection of a cell, the uncoated DNA is usually blocked by the host intrinsic immune system inside the nucleus. Although it is crucial for the virus to counteract the host intrinsic immune system and access its genome, little is known about how viruses can knock down host restriction and identify their blocked genomes for later viral gene activation and replication. We found that upon baculovirus transduction into Vero E6 cells, the invading viral DNA is trapped by the cellular death domain-associated protein (Daxx) and histone H3.3 in the nucleus, resulting in gene inactivation. IE2, a baculovirus transactivator, targets host Daxx through IE2 SUMO-interacting motifs (SIMs) to indirectly access viral DNA and forms unique nuclear body structures, which we term clathrate cage-like apparatus (CCLAs), at the early transduction stage. At the later transduction stage, CCLAs gradually enlarge, and IE2 continues to closely interact with viral DNA but no longer associates with Daxx. The association with Daxx is essential for IE2 CCLA formation, and the enlarged CCLAs are capable of transactivating viral but not chromosomal DNA of Vero E6 cells. Our study reveals that baculovirus IE2 counteracts the cellular intrinsic immune system by specifically targeting Daxx and H3.3 to associate with viral DNA indirectly and efficiently. IE2 then utilizes this association with viral DNA to establish a unique CCLA cellular nanomachinery, which is visible under light microscopy as an enclosed environment for proper viral gene expression. The major breakthrough of this work is that viral protein IE2 localizes and transactivates its own viral DNA through a most unlikely route, i.e., host proteins Daxx and H3.3, which are designed to efficiently restrict viral DNA from expression. By interacting with these host intrinsic immune factors, IE2 can thus target the viral DNA and then form a unique spherical nuclear body, which we name the CCLA, to enclose the viral DNA and necessary factors to assist in high-level transactivation. Our study represents one of the most complete investigations of nuclear body formation. In addition, so far only RNA or protein molecules have been reported as potential nucleators for initiating nuclear body formation; our study may represent the first example showing that DNA can be a nucleator for a new class of nuclear body formation.
当病毒感染细胞时,未包裹的 DNA 通常会被细胞核内的宿主固有免疫系统所阻断。虽然病毒对抗宿主固有免疫系统并获取其基因组对于病毒的生存至关重要,但人们对病毒如何能够抑制宿主限制并识别其被阻断的基因组以进行后期病毒基因激活和复制知之甚少。我们发现,当杆状病毒转入 Vero E6 细胞时,入侵的病毒 DNA 会被细胞核中的细胞死亡结构域相关蛋白(Daxx)和组蛋白 H3.3 捕获,导致基因失活。杆状病毒转录激活因子 IE2 通过 IE2 SUMO 相互作用基序(SIM)靶向宿主 Daxx,从而间接接触病毒 DNA,并在早期转导阶段形成独特的核体结构,我们称之为笼状小体样装置(CCLA)。在后期转导阶段,CCLA 逐渐扩大,IE2 继续与病毒 DNA 紧密相互作用,但不再与 Daxx 结合。与 Daxx 的结合对于 IE2 CCLA 的形成至关重要,并且扩大的 CCLA 能够激活病毒但不能激活 Vero E6 细胞的染色体 DNA。我们的研究表明,杆状病毒 IE2 通过特异性靶向 Daxx 和 H3.3 与病毒 DNA 间接且高效地结合,从而对抗细胞固有免疫系统。IE2 随后利用与病毒 DNA 的这种结合,建立了一种独特的 CCLA 细胞纳米机械装置,在光学显微镜下可以看到它作为一个封闭环境,以确保病毒基因的正常表达。这项工作的主要突破是,病毒蛋白 IE2 通过一种最不可能的途径定位并转录激活其自身的病毒 DNA,即宿主蛋白 Daxx 和 H3.3,它们旨在有效地限制病毒 DNA 的表达。通过与这些宿主固有免疫因子相互作用,IE2 可以靶向病毒 DNA,然后形成独特的球形核体,我们将其命名为 CCLA,以包围病毒 DNA 和必要的因子,以协助高水平的转录激活。我们的研究代表了对核体形成的最完整的研究之一。此外,迄今为止,只有 RNA 或蛋白质分子被报道为潜在的核引发剂,用于启动核体形成;我们的研究可能代表了第一个表明 DNA 可以作为一种新的核体形成的核引发剂的例子。