Ma Ruichao, Saxberg Brendan, Owens Clai, Leung Nelson, Lu Yao, Simon Jonathan, Schuster David I
Department of Physics and James Frank Institute, University of Chicago, Chicago, IL, USA.
Nature. 2019 Feb;566(7742):51-57. doi: 10.1038/s41586-019-0897-9. Epub 2019 Feb 6.
Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions-properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for photons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter.
超导电路是量子计算的一个具有竞争力的平台,因为它们具备可控性、长相干时间和强相互作用——这些特性对于包含微波光子的量子材料的研究至关重要。然而,这些电路中的固有光子损耗阻碍了量子多体相的实现。在这里,我们通过在强相互作用 regime 中为光子构建一个玻色 - 哈伯德晶格,利用超导电路来探索强关联量子物质。我们开发了一种通过库工程进行耗散制备不可压缩多体相的通用方法,并将其应用于我们的系统,以稳定光子的莫特绝缘体以防止损耗。对晶格的位点和时间分辨读出使我们能够通过莫特相中缺陷传播和去除的动力学来研究热化过程的微观细节。我们的实验证明了超导电路在相干和工程耗散环境中研究强关联物质的能力。结合最近展示的超导微波陈绝缘体,我们预计我们的方法将能够探索物质的拓扑有序相。