Suppr超能文献

具有抑制性脉冲时间依赖可塑性的无标度神经网络中的爆发同步。

Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity.

作者信息

Kim Sang-Yoon, Lim Woochang

机构信息

Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea.

出版信息

Cogn Neurodyn. 2019 Feb;13(1):53-73. doi: 10.1007/s11571-018-9505-1. Epub 2018 Sep 11.

Abstract

We are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the Barabási-Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh-Rose neurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed synaptic inhibition strengths. In contrast, in our present work, we take into consideration iSTDP and investigate its effect on BS by varying the noise intensity. Our new main result is to find occurrence of a Matthew effect in inhibitory synaptic plasticity: good BS gets better via LTD, while bad BS get worse via LTP. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). We note that, due to inhibition, the roles of LTD and LTP in inhibitory synaptic plasticity are reversed in comparison with those in excitatory synaptic plasticity. Moreover, emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic burst onset times. Finally, in the presence of iSTDP we investigate the effects of network architecture on BS by varying the symmetric attachment degree and the asymmetry parameter in the SFN.

摘要

我们关注的是,在由抑制性爆发性 Hindmarsh-Rose 神经元组成的巴拉巴西-阿尔伯特无标度网络(SFN)中,与健康和疾病中的神经信息处理相关的爆发同步(BS)。这个抑制性神经元群体具有由抑制性突触时间依赖可塑性(iSTDP)控制的适应性动态突触强度。在之前未考虑 iSTDP 的工作中,发现对于固定的突触抑制强度,在一定范围的噪声强度下会出现 BS。相比之下,在我们目前的工作中,我们考虑了 iSTDP,并通过改变噪声强度来研究其对 BS 的影响。我们新的主要结果是在抑制性突触可塑性中发现了马太效应:良好的 BS 通过长时程抑制(LTD)变得更好,而不良的 BS 通过长时程增强(LTP)变得更糟。这种抑制性突触可塑性中的马太效应与兴奋性突触可塑性中的情况相反,在兴奋性突触可塑性中,良好(不良)的同步通过 LTP(LTD)变得更好(更糟)。我们注意到,由于抑制作用,与兴奋性突触可塑性相比,LTD 和 LTP 在抑制性突触可塑性中的作用是相反的。此外,通过基于突触前和突触后爆发起始时间之间时间延迟分布的微观方法,深入研究了突触抑制强度的 LTD 和 LTP 的出现情况。最后,在存在 iSTDP 的情况下,我们通过改变 SFN 中的对称附着度和不对称参数来研究网络架构对 BS 的影响。

相似文献

引用本文的文献

3
Detecting synaptic connections in neural systems using compressive sensing.利用压缩感知检测神经系统中的突触连接。
Cogn Neurodyn. 2022 Aug;16(4):961-972. doi: 10.1007/s11571-021-09750-6. Epub 2021 Nov 20.
5
Neural mechanism of visual information degradation from retina to V1 area.视觉信息从视网膜到V1区降解的神经机制。
Cogn Neurodyn. 2021 Apr;15(2):299-313. doi: 10.1007/s11571-020-09599-1. Epub 2020 May 20.

本文引用的文献

4
Measuring spike timing distance in the Hindmarsh-Rose neurons.测量 Hindmarsh-Rose 神经元中的峰电位时间间隔
Cogn Neurodyn. 2018 Apr;12(2):225-234. doi: 10.1007/s11571-017-9466-9. Epub 2017 Dec 27.
5
Neural electrical activity and neural network growth.神经电活动和神经网络生长。
Neural Netw. 2018 May;101:15-24. doi: 10.1016/j.neunet.2018.02.001. Epub 2018 Feb 9.
10
Plasticity of cortical excitatory-inhibitory balance.皮质兴奋-抑制平衡的可塑性。
Annu Rev Neurosci. 2015 Jul 8;38:195-219. doi: 10.1146/annurev-neuro-071714-034002. Epub 2015 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验