Suppr超能文献

噪声诱导的阈下爆发神经元抑制型小世界网络中的突发和尖峰同步。

Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons.

机构信息

Computational Neuroscience Lab., Department of Science Education, Daegu National University of Education, Daegu, 705-115 Korea.

出版信息

Cogn Neurodyn. 2015 Apr;9(2):179-200. doi: 10.1007/s11571-014-9314-0. Epub 2014 Nov 29.

Abstract

We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh-Rose neurons. For modeling complex synaptic connectivity, we consider the Watts-Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the [Formula: see text]-[Formula: see text] plane ([Formula: see text]: synaptic inhibition strength and [Formula: see text]: noise intensity). As the rewiring probability [Formula: see text] is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the [Formula: see text]-[Formula: see text] plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.

摘要

我们对阈下神经元的噪声诱发点火感兴趣,这可能用于环境刺激的编码。与阈下尖峰神经元的情况不同,先前仅研究了全局耦合情况下的噪声诱导群体同步。因此,我们研究了复杂网络结构对阈下爆发性 Hindmarsh-Rose 神经元抑制群体中噪声诱导同步的影响。为了模拟复杂的突触连接,我们考虑了 Watts-Strogatz 小世界网络,该网络通过重连在规则晶格和随机网络之间进行插值,并研究了小世界连接对噪声诱导群体同步出现的影响。因此,发现噪声诱导爆发同步(在缓慢爆发时间尺度上的同步)和尖峰同步(在快速尖峰时间尺度上的同步)出现在[Formula: see text]-[Formula: see text]平面的同步区域中([Formula: see text]:突触抑制强度,[Formula: see text]:噪声强度)。随着重连概率[Formula: see text]从 1(随机网络)降低到 0(规则晶格),在[Formula: see text]-[Formula: see text]平面上的尖峰同步区域迅速缩小,而爆发同步区域缓慢减小。我们通过频率滤波分离慢爆发和快尖峰时间尺度,并采用我们最近的工作中引入的现实有序参数和统计力学度量来描述噪声诱导的爆发和尖峰同步。因此,爆发和尖峰同步转变的爆发和尖峰有序参数分别确定了爆发和尖峰同步的阈值。此外,我们还分别使用统计力学的爆发和尖峰度量来衡量爆发和尖峰同步的程度。

相似文献

10
Measuring spike timing distance in the Hindmarsh-Rose neurons.测量 Hindmarsh-Rose 神经元中的峰电位时间间隔
Cogn Neurodyn. 2018 Apr;12(2):225-234. doi: 10.1007/s11571-017-9466-9. Epub 2017 Dec 27.

引用本文的文献

本文引用的文献

2
Oscillations and synchrony in a cortical neural network.皮层神经网络中的振荡与同步。
Cogn Neurodyn. 2014 Apr;8(2):157-66. doi: 10.1007/s11571-013-9268-7. Epub 2013 Sep 11.
4
Realistic thermodynamic and statistical-mechanical measures for neural synchronization.用于神经同步的现实热力学和统计力学度量。
J Neurosci Methods. 2014 Apr 15;226:161-170. doi: 10.1016/j.jneumeth.2013.12.013. Epub 2014 Jan 30.
10
Monitoring spike train synchrony.监测尖峰脉冲序列同步。
J Neurophysiol. 2013 Mar;109(5):1457-72. doi: 10.1152/jn.00873.2012. Epub 2012 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验