Suppr超能文献

通过克隆群体信息的概率集成进行体细胞突变检测和分类。

Somatic mutation detection and classification through probabilistic integration of clonal population information.

机构信息

1Department of Computer Science, University of British Columbia, 201- 2366 Main Mall, V6T 1Z4 Vancouver, Canada.

2Department of Statistics, University of Washington, B313 Padelford Hall, Northeast Stevens Way, Seattle, WA 24105 USA.

出版信息

Commun Biol. 2019 Jan 31;2:44. doi: 10.1038/s42003-019-0291-z. eCollection 2019.

Abstract

Somatic mutations are a primary contributor to malignancy in human cells. Accurate detection of mutations is needed to define the clonal composition of tumours whereby clones may have distinct phenotypic properties. Although analysis of mutations over multiple tumour samples from the same patient has the potential to enhance identification of clones, few analytic methods exploit the correlation structure across samples. We posited that incorporating clonal information into joint analysis over multiple samples would improve mutation detection, particularly those with low prevalence. In this paper, we develop a new procedure called MuClone, for detection of mutations across multiple tumour samples of a patient from whole genome or exome sequencing data. In addition to mutation detection, MuClone classifies mutations into biologically meaningful groups and allows us to study clonal dynamics. We show that, on lung and ovarian cancer datasets, MuClone improves somatic mutation detection sensitivity over competing approaches without compromising specificity.

摘要

体细胞突变是人类细胞恶性肿瘤的主要原因。需要准确检测突变,以确定肿瘤的克隆组成,其中克隆可能具有不同的表型特征。虽然对来自同一患者的多个肿瘤样本的突变进行分析有可能增强克隆的识别,但很少有分析方法利用样本之间的相关结构。我们假设将克隆信息纳入多个样本的联合分析中,将提高突变检测的准确性,特别是那些低流行率的突变。在本文中,我们开发了一种新的方法 MuClone,用于从全基因组或外显子组测序数据中检测患者的多个肿瘤样本中的突变。除了突变检测之外,MuClone 还将突变分类为具有生物学意义的组,并允许我们研究克隆动力学。我们表明,在肺癌和卵巢癌数据集上,MuClone 提高了体细胞突变检测的灵敏度,而不会降低特异性,优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad70/6355807/ceaa0237be87/42003_2019_291_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验