Suppr超能文献

高真空条件下用于热光伏发射器的耐火层状超材料的热降解

Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition.

作者信息

Kim Jin Hwan, Jung Sang Min, Shin Moo Whan

出版信息

Opt Express. 2019 Feb 4;27(3):3039-3054. doi: 10.1364/OE.27.003039.

Abstract

Emissivity-tunable metamaterials of layered refractory metal and dielectric have great potentials as a simple thermophotovoltaic (TPV) selective emitter due to its near-omnidirectional, polarization-independent, and broadband selective emissivity. However, it is known that the stability of the layered structure is limited by the oxidation of metals. While there still exists ambiguity concerning the main source of oxygen between adjacent oxide layers and external residual oxygen, most reports focus on the adjacent layers. In this report, thermal stability of a tungsten-based layered metamaterial is investigated under a high-vacuum environment with great care to reduce residual oxygen. The results show unprecedented thermal stability up to 1200 °C for 3 h without any measurable oxidation of metal. This implies that the interlayer diffusion of oxygen from adjacent oxide layers is not exclusively responsible for the oxidation of metal. At such a high temperature, the layered metamaterial theoretically yields a high convertible radiative power density of 3.04 W/cm with comparable spectral efficiency of 40.2%. Finally, after performing series of thermal tests under higher thermal loads, we propose a novel high-temperature degradation model for layered metamaterials, the stability of which is ultimately limited by the agglomeration of thin metal layers.

摘要

由层状难熔金属和电介质构成的发射率可调超材料,因其近乎全向、与偏振无关且具有宽带选择性发射率,作为一种简单的热光伏(TPV)选择性发射器具有巨大潜力。然而,众所周知,层状结构的稳定性受金属氧化的限制。虽然相邻氧化物层之间的主要氧源与外部残余氧之间仍存在不确定性,但大多数报告关注的是相邻层。在本报告中,对钨基层状超材料在高真空环境下的热稳定性进行了仔细研究,以尽量减少残余氧。结果表明,在高达1200°C的温度下保持3小时,金属没有任何可测量的氧化,展现出前所未有的热稳定性。这意味着来自相邻氧化物层的氧的层间扩散并非金属氧化的唯一原因。在如此高的温度下,层状超材料理论上可产生3.04 W/cm的高可转换辐射功率密度,光谱效率达40.2%。最后,在更高热负荷下进行一系列热测试后,我们提出了一种层状超材料的新型高温降解模型,其稳定性最终受薄金属层团聚的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验