Suppr超能文献

基于钨的超材料发射器在中等真空和惰性气体条件下的热稳定性。

Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions.

作者信息

Chirumamilla Manohar, Krishnamurthy Gnanavel Vaidhyanathan, Rout Surya Snata, Ritter Martin, Störmer Michael, Petrov Alexander Yu, Eich Manfred

机构信息

Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg, 21073, Germany.

Institute of Materials Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Max-Planck-Strasse 1, Geesthacht, 21502, Germany.

出版信息

Sci Rep. 2020 Feb 27;10(1):3605. doi: 10.1038/s41598-020-60419-2.

Abstract

Commercial deployment of thermophotovoltaics (TPV) is lacking behind the implementation of solar PV technology due to limited thermal stability of the selective emitter structures. Most of the TPV emitters demonstrated so far are designed to operate under high vacuum conditions (10 mbar vacuum pressure), whereas under medium vacuum conditions (10 mbar vacuum pressure), which are feasible in technical implementations of TPV, these emitters suffer from oxidation due to significant O partial pressure. In this work, the thermal stability of 1D refractory W-HfO based multilayered metamaterial emitter structure is investigated under different vacuum conditions. The impact of the O partial pressure on thermal stability of the emitters is experimentally quantified. We show that, under medium vacuum conditions, i.e. ~10 mbar vacuum pressure, the emitter shows unprecedented thermal stability up to 1300 °C when the residual O in the annealing chamber is minimized by encapsulating the annealing chamber with Ar atmosphere. This study presents a significant step in the experimental implementation of high temperature stable emitters under medium vacuum conditions, and their potential in construction of economically viable TPV systems. The high TPV efficiency, ~50% spectral efficiency for GaSb PV cell at 1300 °C, and high temperature stability make this platform well suited for technical application in next-generation TPV systems.

摘要

由于选择性发射极结构的热稳定性有限,热光伏(TPV)的商业部署落后于太阳能光伏技术的实施。到目前为止,大多数已展示的TPV发射极设计用于在高真空条件下(10毫巴真空压力)运行,而在TPV技术实施中可行的中等真空条件下(100毫巴真空压力),这些发射极由于显著的氧分压而遭受氧化。在这项工作中,研究了一维难熔W-HfO基多层超材料发射极结构在不同真空条件下的热稳定性。通过实验量化了氧分压对发射极热稳定性的影响。我们表明,在中等真空条件下,即~100毫巴真空压力下,当通过用氩气气氛封装退火室将退火室中的残余氧降至最低时,发射极在高达1300°C的温度下表现出前所未有的热稳定性。这项研究在中等真空条件下高温稳定发射极的实验实施及其在构建经济可行的TPV系统中的潜力方面迈出了重要一步。高TPV效率、在1300°C时GaSb光伏电池约50%的光谱效率以及高温稳定性使该平台非常适合下一代TPV系统的技术应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0a9/7046693/1dd2bb8ba10c/41598_2020_60419_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验