From the Biochemistry and Cancer Biology Graduate Program, Augusta University, Augusta, Georgia 30912.
the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912.
J Biol Chem. 2019 Apr 5;294(14):5700-5719. doi: 10.1074/jbc.RA118.005699. Epub 2019 Feb 7.
The tumor suppressor bridging integrator 1 (BIN1) is a corepressor of the transcription factor E2F1 and inhibits cell-cycle progression. BIN1 also curbs cellular poly(ADP-ribosyl)ation (PARylation) and increases sensitivity of cancer cells to DNA-damaging therapeutic agents such as cisplatin. However, how BIN1 deficiency, a hallmark of advanced cancer cells, increases cisplatin resistance remains elusive. Here, we report that BIN1 inactivates ataxia telangiectasia-mutated (ATM) serine/threonine kinase, particularly when BIN1 binds E2F1. BIN1 + 12A (a cancer-associated splicing variant) also inhibited cellular PARylation, but only BIN1 increased cisplatin sensitivity. BIN1 prevented E2F1 from transcriptionally activating the human promoter, whereas BIN1 + 12A did not physically interact with E2F1. Conversely, BIN1 loss significantly increased E2F1-dependent formation of MRE11A/RAD50/NBS1 DNA end-binding protein complex and efficiently promoted ATM autophosphorylation. Even in the absence of dsDNA breaks (DSBs), BIN1 loss promoted ATM-dependent phosphorylation of histone H2A family member X (forming γH2AX, a DSB biomarker) and mediator of DNA damage checkpoint 1 (MDC1, a γH2AX-binding adaptor protein for DSB repair). Of note, even in the presence of transcriptionally active ( proapoptotic) TP53 tumor suppressor, BIN1 loss generally increased cisplatin resistance, which was conversely alleviated by ATM inactivation or E2F1 reduction. However, E2F2 or E2F3 depletion did not recapitulate the cisplatin sensitivity elicited by E2F1 elimination. Our study unveils an E2F1-specific signaling circuit that constitutively activates ATM and provokes cisplatin resistance in BIN1-deficient cancer cells and further reveals that γH2AX emergence may not always reflect DSBs if BIN1 is absent.
肿瘤抑制因子桥连整合因子 1(BIN1)是转录因子 E2F1 的核心抑制剂,可抑制细胞周期进程。BIN1 还可抑制细胞多聚(ADP-核糖基)化(PARylation),并增加癌细胞对顺铂等 DNA 损伤治疗药物的敏感性。然而,作为晚期癌细胞标志的 BIN1 缺失如何增加顺铂耐药性仍然难以捉摸。在这里,我们报告 BIN1 使共济失调毛细血管扩张症突变(ATM)丝氨酸/苏氨酸激酶失活,特别是当 BIN1 结合 E2F1 时。BIN1 + 12A(一种与癌症相关的剪接变体)也抑制了细胞 PARylation,但只有 BIN1 增加了顺铂敏感性。BIN1 阻止 E2F1 转录激活人 启动子,而 BIN1 + 12A 与 E2F1 没有物理相互作用。相反,BIN1 缺失显着增加了 E2F1 依赖性 MRE11A/RAD50/NBS1 DNA 末端结合蛋白复合物的形成,并有效地促进了 ATM 自动磷酸化。即使不存在双链 DNA 断裂(DSBs),BIN1 缺失也促进了 ATM 依赖性组蛋白 H2A 家族成员 X(形成 γH2AX,DSB 生物标志物)和 DNA 损伤检查点 1(MDC1,用于 DSB 修复的 γH2AX 结合衔接蛋白)的磷酸化。值得注意的是,即使存在转录活性(促凋亡)TP53 肿瘤抑制因子,BIN1 缺失通常也会增加顺铂耐药性,而 ATM 失活或 E2F1 减少则相反。然而,E2F2 或 E2F3 的耗竭并不能再现由 E2F1 消除引起的顺铂敏感性。我们的研究揭示了一个 E2F1 特异性信号通路,该通路可持续激活 ATM,并在 BIN1 缺失的癌细胞中引发顺铂耐药性,并进一步表明如果不存在 BIN1,则 γH2AX 的出现并不总是反映 DSB。