Department of Brain & Cognitive Sciences and Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA.
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota at Twin Cities, Minneapolis, MN, 55455, USA.
Sci Rep. 2019 Feb 7;9(1):1557. doi: 10.1038/s41598-018-37892-x.
Visual perceptual learning (VPL) can lead to long-lasting perceptual improvements. One of the central topics in VPL studies is the locus of plasticity in the visual processing hierarchy. Here, we tackled this question in the context of motion processing. We took advantage of an established transition from component-dependent representations at the earliest level to pattern-dependent representations at the middle-level of cortical motion processing. Two groups of participants were trained on the same motion direction identification task using either grating or plaid stimuli. A set of pre- and post-training tests was used to determine the degree of learning specificity and generalizability. This approach allowed us to disentangle contributions from different levels of processing stages to behavioral improvements. We observed a complete bi-directional transfer of learning between component and pattern stimuli that moved to the same directions, indicating learning-induced plasticity associated with intermediate levels of motion processing. Moreover, we found that motion VPL is specific to the trained stimulus direction, speed, size, and contrast, diminishing the possibility of non-sensory decision-level enhancements. Taken together, these results indicate that, at least for the type of stimuli and the task used here, motion VPL most likely alters visual computation associated with signals at the middle stage of motion processing.
视觉感知学习 (VPL) 可以导致长期的感知改善。VPL 研究的一个核心主题是视觉处理层次结构中可塑性的位置。在这里,我们在运动处理的背景下解决了这个问题。我们利用了在皮质运动处理的最早层次上从基于成分的表示到基于模式的表示的既定转变。两组参与者使用光栅或格子刺激物在相同的运动方向识别任务上进行训练。一组预训练和后训练测试用于确定学习特异性和通用性的程度。这种方法允许我们将不同处理阶段的贡献分开,以改善行为。我们观察到从成分和模式刺激物之间的完全双向学习转移,这些刺激物朝着相同的方向移动,这表明与中间水平的运动处理相关的学习诱导可塑性。此外,我们发现运动 VPL 特定于训练刺激的方向、速度、大小和对比度,降低了非感觉决策水平增强的可能性。总之,这些结果表明,至少对于这里使用的刺激类型和任务,运动 VPL 很可能改变与运动处理中间阶段的信号相关的视觉计算。