Suppr超能文献

示踪剂在粘蛋白水凝胶中的非高斯、非遍历和非菲克扩散。

Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels.

机构信息

Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.

出版信息

Soft Matter. 2019 Mar 20;15(12):2526-2551. doi: 10.1039/c8sm02096e.

Abstract

Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.

摘要

天然黏液是一种具有重要生物学意义的聚合物基软物质材料。病原体在黏液中的扩散是非高斯和非遍历的吗?我们研究了微米级示踪剂在黏蛋白水凝胶中的被动、热驱动运动,黏蛋白是黏液的主要聚合物成分。我们报告了贝叶斯分析结果,对一组示踪轨迹的几种扩散模型进行了排名[C. E. Wagner 等人,生物大分子,2017 年,18,3654]。使用了具有“扩散扩散系数”、分数和标准布朗运动的模型。计算了每个模型的似然函数和证据,为每个轨迹对每个模型的重要性进行了排名。我们发现粘弹性异常扩散通常是最可能的,其次是布朗运动,而扩散系数随扩散系数变化的模型则很少实现。我们的分析还澄清了平均位移的分布、标度指数和扩散系数的相关性,以及在不同 pH 值下位移的非高斯程度。还量化了弱遍历性的破坏。我们得出结论,与原始研究一致,在低 pH 值下,即对应于最不均匀的网络时,示踪剂在黏蛋白凝胶中的扩散最非高斯和非遍历。使用具有嵌套采样算法的贝叶斯方法,以及对多个统计度量的定量分析,我们报告了对黏蛋白凝胶中扩散可能的物理机制的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验