Suppr超能文献

当平均水平还不够好时:识别临床数据中有意义的亚组。

When Average Isn't Good Enough: Identifying Meaningful Subgroups in Clinical Data.

作者信息

Gloster Andrew T, Nadler Matthias, Block Victoria, Haller Elisa, Rubel Julian, Benoy Charles, Villanueva Jeanette, Bader Klaus, Walter Marc, Lang Undine, Hofmann Stefan G, Ciarrochi Joseph, Hayes Steven C

机构信息

Division of Clinical Psychology and Intervention Science, Department of Psychology, University of Basel, Basel, Switzerland.

Center for Innovative Finance, University of Basel, Basel, Switzerland.

出版信息

Cognit Ther Res. 2024;48(4):537-551. doi: 10.1007/s10608-023-10453-x. Epub 2024 Jan 28.

Abstract

BACKGROUND

Clinical data are usually analyzed with the assumption that knowledge gathered from group averages applies to the individual. Doing so potentially obscures patients with meaningfully different trajectories of therapeutic change. Needed are "idionomic" methods that first examine idiographic patterns before nomothetic generalizations are made. The objective of this paper is to test whether such an idionomic method leads to different clinical conclusions.

METHODS

51 patients completed weekly process measures and symptom severity over a period of eight weeks. Change trajectories were analyzed using a nomothetic approach and an idiographic approach with bottom-up clustering of similar individuals. The outcome was patients' well-being at post-treatment.

RESULTS

Individuals differed in the extent that underlying processes were linked to symptoms. Average trend lines did not represent the intraindividual changes well. The idionomic approach readily identified subgroups of patients that differentially predicted distal outcomes (well-being).

CONCLUSIONS

Relying exclusively on average results may lead to an oversight of intraindividual pathways. Characterizing data first using idiographic approaches led to more refined conclusions, which is clinically useful, scientifically rigorous, and may help advance individualized psychotherapy approaches.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s10608-023-10453-x.

摘要

背景

临床数据的分析通常基于这样的假设,即从群体平均值中获得的知识适用于个体。这样做可能会掩盖治疗变化轨迹有显著差异的患者。需要“独特法则”方法,即在进行通则性概括之前先检查独特模式。本文的目的是测试这种独特法则方法是否会得出不同的临床结论。

方法

51名患者在八周时间内完成了每周的过程测量和症状严重程度评估。使用通则性方法和独特性方法(对相似个体进行自下而上聚类)分析变化轨迹。结果是治疗后的患者幸福感。

结果

个体在潜在过程与症状的关联程度上存在差异。平均趋势线不能很好地代表个体内部的变化。独特法则方法很容易识别出对远期结果(幸福感)有不同预测的患者亚组。

结论

仅依赖平均结果可能会忽略个体内部的路径。首先使用独特性方法对数据进行特征描述会得出更精确的结论,这在临床上有用,在科学上严谨,并且可能有助于推进个体化心理治疗方法。

补充信息

在线版本包含可在10.1007/s10608-023-10453-x获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f1/11341641/6ee24d1fec2f/10608_2023_10453_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验