Suppr超能文献

明显智能手机应用程序,一种新的饮食记录方法:与食物频率问卷的比较。

EVIDENT Smartphone App, a New Method for the Dietary Record: Comparison With a Food Frequency Questionnaire.

机构信息

Primary Health Care Research Unit, Institute of Biomedical Research of Salamanca, La Alamedilla Health Center, Salamanca, Spain.

Health Service of Castilla y León, Valladolid, Spain.

出版信息

JMIR Mhealth Uhealth. 2019 Feb 8;7(2):e11463. doi: 10.2196/11463.

Abstract

BACKGROUND

More alternatives are needed for recording people's normal diet in different populations, especially adults or the elderly, as part of the investigation into the effects of nutrition on health.

OBJECTIVE

The aim of this study was to compare the estimated values of energy intake, macro- and micronutrient, and alcohol consumption gathered using the EVIDENT II smartphone app against the data estimated with a food frequency questionnaire (FFQ) in an adult population aged 18 to 70 years.

METHODS

We included 362 individuals (mean age 52 years, SD 12; 214/362, 59.1% women) who were part of the EVIDENT II study. The participants registered their food intake using the EVIDENT app during a period of 3 months and through an FFQ. Both methods estimate the average nutritional composition, including energy intake, macro- and micronutrients, and alcohol. Through the app, the values of the first week of food recording, the first month, and the entire 3-month period were estimated. The FFQ gathers data regarding the food intake of the year before the moment of interview.

RESULTS

The intraclass correlation for the estimation of energy intake with the FFQ and the app shows significant results, with the highest values returned when analyzing the app's data for the full 3-month period (.304, 95% CI 0.144-0.434; P<.001). For this period, the correlation coefficient for energy intake is .233 (P<.001). The highest value corresponds to alcohol consumption and the lowest to the intake of polyunsaturated fatty acids (r=.676 and r=.155; P<.001), respectively. The estimation of daily intake of energy, macronutrients, and alcohol presents higher values in the FFQ compared with the EVIDENT app data. Considering the values recorded during the 3-month period, the FFQ for energy intake estimation (Kcal) was higher than that of the app (a difference of 408.7, 95% CI 322.7-494.8; P<.001). The same is true for the other macronutrients, with the exception g/day of saturated fatty acids (.4, 95% CI -1.2 to 2.0; P=.62).

CONCLUSIONS

The EVIDENT app is significantly correlated to FFQ in the estimation of energy intake, macro- and micronutrients, and alcohol consumption. This correlation increases with longer app recording periods. The EVIDENT app can be a good alternative for recording food intake in the context of longitudinal or intervention studies.

TRIAL REGISTRATION

ClinicalTrials.gov NCT02016014; http://clinicaltrials.gov/ct2/show/NCT02016014 (Archived by WebCite at http://www.webcitation.org/760i8EL8Q).

摘要

背景

在不同人群中,特别是在成年人或老年人中,需要更多的替代方法来记录他们的正常饮食,作为营养对健康影响研究的一部分。

目的

本研究旨在比较智能手机应用程序 EVIDENT II 记录的能量摄入、宏量和微量营养素以及酒精摄入量的估计值与 18 至 70 岁成年人使用食物频率问卷 (FFQ) 估计的数据。

方法

我们纳入了 362 名参与者(平均年龄 52 岁,标准差 12;214/362,59.1%为女性),他们是 EVIDENT II 研究的一部分。参与者使用 EVIDENT 应用程序在 3 个月的时间内记录他们的食物摄入量,并通过 FFQ 进行记录。两种方法均估计包括能量摄入、宏量和微量营养素以及酒精在内的平均营养成分。通过应用程序,可以估计食物记录的第一周、第一个月和整个 3 个月期间的数值。FFQ 收集了受访者之前一年的食物摄入量数据。

结果

FFQ 和应用程序对能量摄入的估计值的组内相关具有显著结果,当分析应用程序的整个 3 个月数据时,得到的数值最高(.304,95%置信区间 0.144-0.434;P<.001)。对于这个时间段,能量摄入的相关系数为.233(P<.001)。最高值对应于酒精摄入量,最低值对应于多不饱和脂肪酸的摄入量(r=.676 和 r=.155;P<.001)。能量、宏量营养素和酒精的每日摄入量估计值在 FFQ 中高于 EVIDENT 应用程序数据。考虑到 3 个月期间记录的数据,FFQ 用于能量摄入估计(千卡)高于应用程序(差值为 408.7,95%置信区间 322.7-494.8;P<.001)。其他宏量营养素也是如此,除了饱和脂肪酸(g/天)(.4,95%置信区间-1.2 至 2.0;P=.62)。

结论

EVIDENT 应用程序与 FFQ 在能量摄入、宏量和微量营养素以及酒精消耗的估计中具有显著相关性。这种相关性随着应用程序记录时间的延长而增加。EVIDENT 应用程序可以成为纵向或干预研究中记录食物摄入量的一个很好的替代方法。

试验注册

ClinicalTrials.gov NCT02016014;http://clinicaltrials.gov/ct2/show/NCT02016014(由 WebCite 存档;http://www.webcitation.org/760i8EL8Q)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4330/6384535/18415f431fb4/mhealth_v7i2e11463_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验