Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States.
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States.
Curr Opin Biotechnol. 2022 Jun;75:102701. doi: 10.1016/j.copbio.2022.102701. Epub 2022 Mar 9.
Complete understanding of a biological system requires quantitation of metabolic fluxes that reflect its dynamic state. Various analytical chemistry tools, enzyme-based probes, and microscopy enable flux measurement. However, any method alone falls short of comprehensive flux quantitation. Here we show that integrating these techniques results in a systems-level quantitative map of absolute metabolic fluxes that constitute an indispensable dimension of characterizing phenotypes. Stable isotopes, mass spectrometry, and NMR spectroscopy reveal relative pathway fluxes. Biochemical probes reveal the physical rate of environmental changes. FRET-based and SRS-based microscopy reveal targeted metabolite and chemical bond formation. These techniques are complementary and can be computationally integrated to reveal actionable information on metabolism. Integrative metabolic flux analysis using various quantitative techniques advances biotechnology and medicine.
要全面了解一个生物系统,就需要对反映其动态状态的代谢通量进行定量分析。各种分析化学工具、基于酶的探针和显微镜使通量测量成为可能。然而,任何单一的方法都无法全面定量通量。在这里,我们展示了整合这些技术可以得到绝对代谢通量的系统水平定量图谱,这是描述表型的一个不可或缺的维度。稳定同位素、质谱和 NMR 光谱揭示了相对途径通量。生化探针揭示了环境变化的物理速率。基于 FRET 和 SRS 的显微镜揭示了靶向代谢物和化学键的形成。这些技术是互补的,可以通过计算进行整合,从而揭示代谢方面的可行信息。使用各种定量技术进行综合代谢通量分析可以促进生物技术和医学的发展。