Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
Free Radic Biol Med. 2019 Apr;134:545-554. doi: 10.1016/j.freeradbiomed.2019.01.035. Epub 2019 Feb 5.
Maintenance of intracellular redox homeostasis is critical for cell survival, proliferation, differentiation, and signaling. In this regard, major changes in the intracellular redox milieu may lead to cell death whereas subtle increases in the level of certain oxidizing species may act as signals that regulate a plethora of cellular processes. Redox-sensitive variants of green fluorescent proteins (roGFP2 and rxYFP) were developed and proved useful to monitor intracellular redox changes in a non-invasive and online manner. With the aim to extend the spectral range of the fluorescent redox biosensors, we here describe the generation, biochemical characterization and biological validation of a new redox reporter based on the red-shifted mRuby2 protein (rxmRuby2). Spectrofluorimetric analysis performed with the recombinant biosensor shows a reversible redox response produced by two redox-active cysteine residues predicted by molecular modeling. rxmRuby2 is highly selective for the couple glutathione/glutathione disulfide in the presence of the oxidoreductase glutaredoxin. The estimated redox potential of rxmRuby2 (E° -265 ± 22 mV) makes it suitable for its use in reducing subcellular compartments. Titration assays demonstrated the capacity of rxmRuby2 to monitor redox changes within a physiological pH range. rxmRuby2 responded sensitively and reversibly to different redox stimuli applied to HeLa and HEK293 cells expressing transiently and/or stable the biosensor. Fusing rxmRuby2 to the Clover fluorescent protein allowed normalization of the redox signal to the expression level of the reporter protein and/or to other factors that may affect fluorescence. The new red-shifted redox biosensor show promises for deep-tissue and in vivo imaging applications.
维持细胞内氧化还原稳态对于细胞的存活、增殖、分化和信号转导至关重要。在这方面,细胞内氧化还原环境的重大变化可能导致细胞死亡,而某些氧化物质水平的细微增加则可能作为调节多种细胞过程的信号。开发了氧化还原敏感型绿色荧光蛋白(roGFP2 和 rxYFP)变体,并已证明其可用于非侵入性和在线监测细胞内氧化还原变化。为了扩展荧光氧化还原生物传感器的光谱范围,我们在此描述了一种基于红移 mRuby2 蛋白(rxmRuby2)的新型氧化还原报告蛋白的生成、生化特性和生物学验证。用重组生物传感器进行的荧光分光光度分析表明,分子建模预测的两个氧化还原活性半胱氨酸残基产生了可还原的氧化还原响应。在存在氧化还原酶谷氧还蛋白的情况下,rxmRuby2 对谷胱甘肽/谷胱甘肽二硫化物对具有高度选择性。rxmRuby2 的估计氧化还原电位(E°-265±22mV)使其适用于还原亚细胞区室。滴定实验表明,rxmRuby2 能够在生理 pH 范围内监测氧化还原变化。rxmRuby2 对应用于瞬时和/或稳定表达生物传感器的 HeLa 和 HEK293 细胞的不同氧化还原刺激敏感且可逆地做出响应。将 rxmRuby2 与 Clover 荧光蛋白融合允许将氧化还原信号归一化为报告蛋白的表达水平和/或可能影响荧光的其他因素。新的红移氧化还原生物传感器有望应用于深部组织和体内成像。