Suppr超能文献

基因编码荧光氧化还原指示剂揭示氧化还原信号和氧化毒性

Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity.

机构信息

Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.

出版信息

Chem Res Toxicol. 2021 Aug 16;34(8):1826-1845. doi: 10.1021/acs.chemrestox.1c00149. Epub 2021 Jul 20.

Abstract

Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.

摘要

氧化还原活性分子在细胞内稳态、信号转导和其他生物过程中发挥着重要作用。氧化还原信号的失调会导致毒性作用,并随后导致疾病。因此,实时跟踪活细胞中特定的氧化还原信号分子对于破译它们在病理生理学中的功能作用至关重要。基于荧光蛋白(FP)的基因编码氧化还原指示剂(GERIs)已成为监测各种氧化还原活性分子从亚细胞区室到活体的氧化还原状态的有价值的工具。在本综述的第一部分中,我们概述了背景,重点介绍了各种 GERIs 的传感机制。接下来,我们根据分析目标综述了一系列选定的 GERIs,并讨论了它们的关键生物物理和生化特性。在第三部分中,我们提供了一些应用 GERIs 来理解病理生理过程中的氧化还原信号和氧化毒性的例子。最后,包括一个总结和展望部分。

相似文献

1
Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity.
Chem Res Toxicol. 2021 Aug 16;34(8):1826-1845. doi: 10.1021/acs.chemrestox.1c00149. Epub 2021 Jul 20.
2
Redox imaging using genetically encoded redox indicators in zebrafish and mice.
Biol Chem. 2015 May;396(5):511-22. doi: 10.1515/hsz-2014-0294.
4
Genetically encoded fluorescent redox sensors.
Biochim Biophys Acta. 2014 Feb;1840(2):745-56. doi: 10.1016/j.bbagen.2013.05.030. Epub 2013 May 29.
5
Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
Methods Enzymol. 2017;589:1-49. doi: 10.1016/bs.mie.2017.01.019. Epub 2017 Mar 9.
6
Genetically encoded reactive oxygen species (ROS) and redox indicators.
Biotechnol J. 2014 Feb;9(2):282-93. doi: 10.1002/biot.201300199.
7
Measuring Calcium and ROS by Genetically Encoded Protein Sensors and Fluorescent Dyes.
Methods Mol Biol. 2019;1925:183-196. doi: 10.1007/978-1-4939-9018-4_17.
8
Fluorescent protein-based redox probes.
Antioxid Redox Signal. 2010 Sep 1;13(5):621-50. doi: 10.1089/ars.2009.2948.
9
Dissecting Redox Biology Using Fluorescent Protein Sensors.
Antioxid Redox Signal. 2016 May 1;24(13):680-712. doi: 10.1089/ars.2015.6266. Epub 2015 May 27.
10
Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
Biosens Bioelectron. 2013 Dec 15;50:72-7. doi: 10.1016/j.bios.2013.06.028. Epub 2013 Jun 24.

引用本文的文献

2
Genetically Encoded Biosensors for the Fluorescence Detection of O and Reactive O Species.
Sensors (Basel). 2023 Oct 17;23(20):8517. doi: 10.3390/s23208517.
4
Ratiometric Imaging of Mitochondrial Hydrogen Peroxide in Aβ-Mediated Neurotoxicity.
ACS Sens. 2022 Mar 25;7(3):722-729. doi: 10.1021/acssensors.1c01381. Epub 2022 Feb 28.
5
Improved Red Fluorescent Redox Indicators for Monitoring Cytosolic and Mitochondrial Thioredoxin Redox Dynamics.
Biochemistry. 2022 Mar 1;61(5):377-384. doi: 10.1021/acs.biochem.1c00634. Epub 2022 Feb 8.
6
Circularly Permuted Far-Red Fluorescent Proteins.
Biosensors (Basel). 2021 Nov 3;11(11):438. doi: 10.3390/bios11110438.

本文引用的文献

1
A high-performance genetically encoded fluorescent biosensor for imaging physiological peroxynitrite.
Cell Chem Biol. 2021 Nov 18;28(11):1542-1553.e5. doi: 10.1016/j.chembiol.2021.01.013. Epub 2021 Feb 12.
2
CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD and NMN levels.
Nat Metab. 2020 Nov;2(11):1284-1304. doi: 10.1038/s42255-020-00298-z. Epub 2020 Nov 16.
3
Senescent cells promote tissue NAD decline during ageing via the activation of CD38 macrophages.
Nat Metab. 2020 Nov;2(11):1265-1283. doi: 10.1038/s42255-020-00305-3. Epub 2020 Nov 16.
4
Genetically encoding thyronine for fluorescent detection of peroxynitrite.
Bioorg Med Chem. 2020 Sep 15;28(18):115665. doi: 10.1016/j.bmc.2020.115665. Epub 2020 Jul 29.
5
Real-time monitoring of the in vivo redox state transition using the ratiometric redox state sensor protein FROG/B.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):16019-16026. doi: 10.1073/pnas.1918919117. Epub 2020 Jun 23.
6
Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia.
Antioxidants (Basel). 2020 Jun 11;9(6):516. doi: 10.3390/antiox9060516.
7
MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis.
Nat Metab. 2020 Mar;2(3):270-277. doi: 10.1038/s42255-020-0181-1. Epub 2020 Mar 9.
8
The Roles of NO and HS in Sperm Biology: Recent Advances and New Perspectives.
Int J Mol Sci. 2020 Mar 21;21(6):2174. doi: 10.3390/ijms21062174.
9
Role of the ERO1-PDI interaction in oxidative protein folding and disease.
Pharmacol Ther. 2020 Jun;210:107525. doi: 10.1016/j.pharmthera.2020.107525. Epub 2020 Mar 20.
10
Illuminating NAD Metabolism in Live Cells and In Vivo Using a Genetically Encoded Fluorescent Sensor.
Dev Cell. 2020 Apr 20;53(2):240-252.e7. doi: 10.1016/j.devcel.2020.02.017. Epub 2020 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验