Leibowitz Jeffrey A, Natarajan Gowri, Zhou Junli, Carney Paul R, Ormerod Brandi K
J. Crayton Pruitt Family Department of Biomedical Engineering, USA.
Department of Neurology and Pediatrics, USA; Neuroscience Program, USA.
Epilepsy Res. 2019 Feb;150:78-94. doi: 10.1016/j.eplepsyres.2019.01.005. Epub 2019 Jan 11.
Neurogenesis persists throughout life in the hippocampi of all mammals, including humans. In the healthy hippocampus, relatively quiescent Type-1 neural stem cells (NSCs) can give rise to more proliferative Type-2a neural progenitor cells (NPCs), which generate neuronal-committed Type-2b NPCs that mature into Type-3 neuroblasts. Many Type-3 neuroblasts survive and mature into functionally integrated granule neurons over several weeks. In kindling models of epilepsy, neurogenesis is drastically upregulated and many new neurons form aberrant connections that could support epileptogenesis and/or seizures. We have shown that sustained vector-mediated hippocampal somatostatin (SST) expression can both block epileptogenesis and reverse seizure susceptibility in fully kindled rats. Here we test whether adeno-associated virus (AAV) vector-mediated sustained SST expression modulates hippocampal neurogenesis and microglial activation in fully kindled rats. We found significantly more dividing Type-1 NSCs and a corresponding increased number of surviving new neurons in the hippocampi of kindled versus sham-kindled rats. Increased numbers of activated microglia were found in the granule cell layer and hilus of kindled rats at both time points. After intrahippocampal injection with either eGFP or SST-eGFP vector, we found similar numbers of dividing Type-1 NSCs and -2 NPCs and surviving BrdU neurons and glia in the hippocampi of kindled rats. Upon observed variability in responses to SST-eGFP (2/4 rats exhibited Grade 0 seizures in the test session), we conducted an additional experiment. We found significantly fewer dividing Type-1 NSCs in the hippocampi of SST-eGFP vector-treated responder rats (5/13 rats) relative to SST-eGFP vector-treated non-responders and eGFP vector-treated controls that exhibited high-grade seizures on the test session. The number of activated microglia was upregulated in the GCL and hilus of kindled rats, regardless of vector treatment. These data support the hypothesis that sustained SST expression exerts antiepileptic effects potentially through normalization of neurogenesis and suggests that abnormally high proliferating Type-1 NSC numbers may be a cellular mechanism of epilepsy.
神经发生在包括人类在内的所有哺乳动物的海马体中持续终生。在健康的海马体中,相对静止的1型神经干细胞(NSC)可产生增殖性更强的2a型神经祖细胞(NPC),后者又会生成向神经元分化的2b型NPC,这些细胞会成熟为3型神经母细胞。许多3型神经母细胞会存活下来,并在数周内成熟为功能整合的颗粒神经元。在癫痫点燃模型中,神经发生会急剧上调,许多新神经元会形成异常连接,这可能会促进癫痫发生和/或癫痫发作。我们已经表明,持续的载体介导的海马体生长抑素(SST)表达既可以阻断癫痫发生,又可以逆转完全点燃大鼠的癫痫易感性。在此,我们测试腺相关病毒(AAV)载体介导的持续SST表达是否会调节完全点燃大鼠的海马体神经发生和小胶质细胞激活。我们发现,与假点燃大鼠相比,点燃大鼠海马体中正在分裂的1型NSC明显更多,存活的新神经元数量相应增加。在两个时间点,点燃大鼠的颗粒细胞层和齿状回中活化小胶质细胞的数量均增加。在海马体内注射eGFP或SST-eGFP载体后,我们在点燃大鼠的海马体中发现了数量相似的正在分裂的1型NSC和2型NPC,以及存活的BrdU标记的神经元和神经胶质细胞。鉴于观察到对SST-eGFP的反应存在差异(2/4只大鼠在测试期间表现出0级癫痫发作),我们进行了另一项实验。我们发现,与SST-eGFP载体处理的无反应大鼠以及在测试期间表现出高级别癫痫发作的eGFP载体处理的对照相比,SST-eGFP载体处理的有反应大鼠(5/13只大鼠)海马体中正在分裂的1型NSC明显更少。无论载体处理如何,点燃大鼠的颗粒细胞层和齿状回中活化小胶质细胞的数量均上调。这些数据支持以下假设:持续的SST表达可能通过使神经发生正常化来发挥抗癫痫作用,并表明异常高增殖的1型NSC数量可能是癫痫的一种细胞机制。