Suppr超能文献

一种上肢康复用按需辅助贪婪控制器。

A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation.

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3433-3443. doi: 10.1109/TNNLS.2019.2892157. Epub 2019 Feb 5.

Abstract

Previous studies on robotic rehabilitation have shown that subjects' active participation and effort involved in rehabilitation training can promote the performance of therapies. In order to improve the voluntary effort of participants during the rehabilitation training, assist-as-needed (AAN) control strategies regulating the robotic assistance according to subjects' performance and conditions have been developed. Unfortunately, the heterogeneity of patients' motor function capability in task space is not taken into account during the implementation of these controllers. In this paper, a new scheme called greedy AAN (GAAN) controller is designed for the upper limb rehabilitation training of neurologically impaired subjects. The proposed GAAN control paradigm includes a baseline controller and a Gaussian RBF network that is utilized to model the functional capability of subjects and to provide corresponding a task challenge for them. In order to avoid subjects' slacking and encourage their active engagement, the weight vectors of RBF networks evaluating subjects' impairment level are updated based on a greedy strategy that makes the networks progressively learn the maximum forces over time provided by subjects. Simultaneously, a challenge level modification algorithm is employed to adjust the task challenge according to the task performance of subjects. Experiments on 12 subjects with neurological impairment are conducted to validate the performance and feasibility of the GAAN controller. The results show that the proposed GAAN controller has significant potential to promote the subjects' voluntary engagement during training exercises.

摘要

先前的机器人康复研究表明,受试者在康复训练中积极参与和付出可以促进治疗效果。为了提高参与者在康复训练中的主动参与度,已经开发出了根据受试者的表现和情况调节机器人辅助的按需辅助(AAN)控制策略。然而,在实施这些控制器时,并没有考虑到患者在任务空间中运动功能能力的异质性。在本文中,设计了一种新的方案,称为贪婪 AAN(GAAN)控制器,用于神经功能障碍患者的上肢康复训练。所提出的 GAAN 控制范式包括一个基线控制器和一个高斯 RBF 网络,用于模拟受试者的功能能力,并为他们提供相应的任务挑战。为了避免受试者的懈怠并鼓励他们积极参与,基于一种贪婪策略来更新评估受试者损伤程度的 RBF 网络的权值向量,该策略使网络随着时间的推移逐渐学习受试者提供的最大力。同时,采用挑战水平修正算法根据受试者的任务表现来调整任务挑战。对 12 名神经功能障碍患者进行了实验,以验证 GAAN 控制器的性能和可行性。结果表明,所提出的 GAAN 控制器具有显著潜力,可以促进受试者在训练过程中的主动参与。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验