Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Protoc. 2019 Mar;14(3):955-975. doi: 10.1038/s41596-018-0122-6. Epub 2019 Feb 8.
The study of fungal pathogens is of immediate importance, yet progress is hindered by the technical challenges of genetic manipulation. For Candida species, their inability to maintain plasmids, unusual codon usage, and inefficient homologous recombination are among the obstacles limiting efficient genetic manipulation. New advances in genomic biotechnologies-particularly CRISPR-based tools-have revolutionized genome editing for many fungal species. Here, we present a protocol for CRISPR-Cas9-based manipulation in Candida albicans using a modified gene-drive-based strategy that takes ~1 month to complete. We detail the generation of Candida-optimized Cas9-based plasmids for gene deletion, an efficient transformation protocol using C. albicans haploids, and an optimized mating strategy to generate homozygous single- and double-gene diploid mutants. We further describe protocols for quantifying cell growth and analysis pipelines to calculate fitness and genetic interaction scores for genetic mutants. This protocol overcomes previous limitations associated with genetic manipulation in C. albicans and advances researchers' ability to perform genetic analysis in this pathogen; the protocol also has broad applicability to other mating-competent microorganisms.
真菌病原体的研究具有重要的现实意义,但由于遗传操作的技术挑战,研究进展受到了阻碍。对于念珠菌属物种而言,其维持质粒的能力不足、独特的密码子使用偏好以及低效的同源重组等问题,都限制了其遗传操作的效率。基因组生物技术的新进展——特别是基于 CRISPR 的工具——为许多真菌物种的基因组编辑带来了革命性的变化。在这里,我们提出了一种基于 CRISPR-Cas9 的念珠菌属(Candida albicans)操作方法,使用了一种经过改良的基于基因驱动(gene-drive)的策略,整个过程大约需要 1 个月的时间。我们详细介绍了用于基因缺失的基于念珠菌优化的 Cas9 质粒的生成、使用念珠菌单倍体的高效转化方案,以及优化的交配策略,以生成纯合的单基因和双基因二倍体突变体。我们还进一步描述了用于细胞生长定量的方案和计算遗传突变体适合度和遗传相互作用评分的分析流程。该方案克服了先前在念珠菌属中遗传操作的限制,提高了研究人员在该病原体中进行遗传分析的能力;该方案还具有广泛的适用性,可用于其他有性繁殖能力的微生物。