Emmerstorfer-Augustin Anita, Wriessnegger Tamara, Hirz Melanie, Zellnig Guenther, Pichler Harald
Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
acib-Austrian Centre of Industrial Biotechnology, Graz, Austria.
Methods Mol Biol. 2019;1923:265-285. doi: 10.1007/978-1-4939-9024-5_12.
Approximately 30% of the genes in the human genome code for membrane proteins, and yet we know relatively little about these complex molecules. Therefore, the biochemical and structural characterization of this challenging class of proteins represents an important frontier in both fundamental research and advances in drug discovery. However, due to their unique physical properties and requirement for association with cellular membranes, expression in heterologous systems is often daunting. In this chapter we describe how to engineer the yeast Pichia pastoris to obtain humanized sterol compositions. By implementing some simple genetic engineering approaches, P. pastoris can be reprogrammed to mainly produce cholesterol instead of ergosterol. We show how to apply mass spectrometry to confirm the production of cholesterol instead of ergosterol and how we have further analyzed the strain by electron microscopy. Finally, we delineate how to apply and test the cholesterol-forming P. pastoris strain for functional expression of mammalian Na,K-ATPase α3β1 isoform. Na,K-ATPases have been shown to specifically interact with cholesterol and phospholipids, and, obviously, the presence of cholesterol instead of ergosterol was the key to stabilizing correct localization and activity of this ion transporter.
人类基因组中约30%的基因编码膜蛋白,但我们对这些复杂分子的了解相对较少。因此,对这类具有挑战性的蛋白质进行生化和结构表征是基础研究和药物发现进展中的一个重要前沿领域。然而,由于它们独特的物理性质以及与细胞膜结合的要求,在异源系统中表达往往具有挑战性。在本章中,我们描述了如何改造酵母毕赤酵母以获得人源化的甾醇组成。通过实施一些简单的基因工程方法,毕赤酵母可以被重新编程以主要产生胆固醇而非麦角固醇。我们展示了如何应用质谱法确认胆固醇而非麦角固醇的产生,以及我们如何通过电子显微镜对该菌株进行进一步分析。最后,我们阐述了如何应用和测试产生胆固醇的毕赤酵母菌株用于哺乳动物钠钾ATP酶α3β1亚型的功能表达。钠钾ATP酶已被证明能与胆固醇和磷脂特异性相互作用,显然,胆固醇而非麦角固醇的存在是稳定该离子转运体正确定位和活性的关键。