Suppr超能文献

使用布尔网络形式化和丰富表型特征。

Formalizing and enriching phenotype signatures using Boolean networks.

机构信息

University of Rennes, Inria, CNRS, IRISA, Rennes, F-35000, France; SANOFI R&D, Translational Sciences, Chilly Mazarin 91385, France.

University of Rennes, Inria, CNRS, IRISA, Rennes, F-35000, France.

出版信息

J Theor Biol. 2019 Apr 21;467:66-79. doi: 10.1016/j.jtbi.2019.01.015. Epub 2019 Feb 6.

Abstract

In order to predict the behavior of a biological system, one common approach is to perform a simulation on a dynamic model. Boolean networks allow to analyze the qualitative aspects of the model by identifying its steady states and attractors. Each of them, when possible, is associated with a phenotype which conveys a biological interpretation. Phenotypes are characterized by their signatures, provided by domain experts. The number of steady states tends to increase with the network size and the number of simulation conditions, which makes the biological interpretation difficult. As a first step, we explore the use of Formal Concept Analysis as a symbolic bi-clustering technics to classify and sort the steady states of a Boolean network according to biological signatures based on the hierarchy of the roles the network components play in the phenotypes. FCA generates a lattice structure describing the dependencies between proteins in the signature and steady-states of the Boolean network. We use this lattice (i) to enrich the biological signatures according to the dependencies carried by the network dynamics, (ii) to identify variants to the phenotypes and (iii) to characterize hybrid phenotypes. We applied our approach on a T helper lymphocyte (Th) differentiation network with a set of signatures corresponding to the sub-types of Th. Our method generated the same classification as a manual analysis performed by experts in the field, and was also able to work under extended simulation conditions. This led to the identification and prediction of a new hybrid sub-type later confirmed by the literature.

摘要

为了预测生物系统的行为,一种常见的方法是在动态模型上进行模拟。布尔网络允许通过识别其稳定状态和吸引子来分析模型的定性方面。它们中的每一个,在可能的情况下,都与一个表型相关联,这个表型传达了生物学解释。表型的特征是由领域专家提供的特征签名。随着网络规模和模拟条件数量的增加,稳定状态的数量趋于增加,这使得生物学解释变得困难。作为第一步,我们探索使用形式概念分析作为一种符号双聚类技术,根据网络组件在表型中扮演的角色层次结构,根据生物特征对布尔网络的稳定状态进行分类和排序。FCA 生成一个描述签名中蛋白质和布尔网络稳定状态之间依赖关系的格结构。我们使用这个格结构 (i) 根据网络动态携带的依赖关系丰富生物特征签名,(ii) 识别表型的变体,(iii) 描述混合表型。我们将我们的方法应用于一组对应于 Th 亚型的 Th 分化网络的签名上。我们的方法生成的分类与领域专家进行的手动分析相同,并且还能够在扩展的模拟条件下工作。这导致了一个新的混合亚型的识别和预测,后来被文献证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验