Suppr超能文献

监督机器学习在系统神经科学中的作用。

The roles of supervised machine learning in systems neuroscience.

机构信息

Department of Bioengineering, University of Pennsylvania, United States.

Department of Bioengineering, University of Pennsylvania, United States; Department of Neuroscience, University of Pennsylvania, United States; Canadian Institute for Advanced Research, Canada.

出版信息

Prog Neurobiol. 2019 Apr;175:126-137. doi: 10.1016/j.pneurobio.2019.01.008. Epub 2019 Feb 7.

Abstract

Over the last several years, the use of machine learning (ML) in neuroscience has been rapidly increasing. Here, we review ML's contributions, both realized and potential, across several areas of systems neuroscience. We describe four primary roles of ML within neuroscience: (1) creating solutions to engineering problems, (2) identifying predictive variables, (3) setting benchmarks for simple models of the brain, and (4) serving itself as a model for the brain. The breadth and ease of its applicability suggests that machine learning should be in the toolbox of most systems neuroscientists.

摘要

在过去的几年中,机器学习(ML)在神经科学中的应用迅速增加。在这里,我们回顾了 ML 在系统神经科学的几个领域中的贡献,包括已经实现的和潜在的贡献。我们描述了 ML 在神经科学中的四个主要作用:(1)为工程问题创造解决方案,(2)识别预测变量,(3)为大脑的简单模型设定基准,以及(4)自身作为大脑的模型。其广泛的适用性和易用性表明,机器学习应该成为大多数系统神经科学家工具包的一部分。

相似文献

1
The roles of supervised machine learning in systems neuroscience.监督机器学习在系统神经科学中的作用。
Prog Neurobiol. 2019 Apr;175:126-137. doi: 10.1016/j.pneurobio.2019.01.008. Epub 2019 Feb 7.
6
If deep learning is the answer, what is the question?如果深度学习是答案,那么问题是什么?
Nat Rev Neurosci. 2021 Jan;22(1):55-67. doi: 10.1038/s41583-020-00395-8. Epub 2020 Nov 16.

引用本文的文献

6
Multi-level feature fusion network for neuronal morphology classification.用于神经元形态分类的多级特征融合网络。
Front Neurosci. 2024 Oct 21;18:1465642. doi: 10.3389/fnins.2024.1465642. eCollection 2024.

本文引用的文献

1
Machine Learning for Neural Decoding.机器学习在神经解码中的应用。
eNeuro. 2020 Aug 31;7(4). doi: 10.1523/ENEURO.0506-19.2020. Print 2020 Jul/Aug.
3
Spontaneous behaviors drive multidimensional, brainwide activity.自发性行为驱动多维全脑活动。
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
4
Fast animal pose estimation using deep neural networks.基于深度神经网络的快速动物姿势估计。
Nat Methods. 2019 Jan;16(1):117-125. doi: 10.1038/s41592-018-0234-5. Epub 2018 Dec 20.
5
Omitted Variable Bias in GLMs of Neural Spiking Activity.GLM 分析神经发放活动中的忽略变量偏差。
Neural Comput. 2018 Dec;30(12):3227-3258. doi: 10.1162/neco_a_01138. Epub 2018 Oct 12.
6
Inferring hidden structure in multilayered neural circuits.推断多层神经回路中的隐藏结构。
PLoS Comput Biol. 2018 Aug 23;14(8):e1006291. doi: 10.1371/journal.pcbi.1006291. eCollection 2018 Aug.
8
Modern Machine Learning as a Benchmark for Fitting Neural Responses.现代机器学习作为拟合神经反应的基准
Front Comput Neurosci. 2018 Jul 19;12:56. doi: 10.3389/fncom.2018.00056. eCollection 2018.
10
Prefrontal cortex as a meta-reinforcement learning system.前额皮质作为一个元强化学习系统。
Nat Neurosci. 2018 Jun;21(6):860-868. doi: 10.1038/s41593-018-0147-8. Epub 2018 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验