Sun Chunli, Zhao Feng
MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, China.
Front Neurosci. 2024 Oct 21;18:1465642. doi: 10.3389/fnins.2024.1465642. eCollection 2024.
Neuronal morphology can be represented using various feature representations, such as hand-crafted morphometrics and deep features. These features are complementary to each other, contributing to improving performance. However, existing classification methods only utilize a single feature representation or simply concatenate different features without fully considering their complementarity. Therefore, their performance is limited and can be further improved. In this paper, we propose a multi-level feature fusion network that fully utilizes diverse feature representations and their complementarity to effectively describe neuronal morphology and improve performance. Specifically, we devise a Multi-Level Fusion Module (MLFM) and incorporate it into each feature extraction block. It can facilitate the interaction between different features and achieve effective feature fusion at multiple levels. The MLFM comprises a channel attention-based Feature Enhancement Module (FEM) and a cross-attention-based Feature Interaction Module (FIM). The FEM is used to enhance robust morphological feature presentations, while the FIM mines and propagates complementary information across different feature presentations. In this way, our feature fusion network ultimately yields a more distinctive neuronal morphology descriptor that can effectively characterize neurons than any singular morphological representation. Experimental results show that our method effectively depicts neuronal morphology and correctly classifies 10-type neurons on the NeuronMorpho-10 dataset with an accuracy of 95.18%, outperforming other approaches. Moreover, our method performs well on the NeuronMorpho-12 and NeuronMorpho-17 datasets and possesses good generalization.
神经元形态可以使用各种特征表示来呈现,例如手工制作的形态计量学特征和深度特征。这些特征相互补充,有助于提高性能。然而,现有的分类方法仅使用单一特征表示,或者只是简单地连接不同特征,而没有充分考虑它们的互补性。因此,它们的性能有限,可以进一步提高。在本文中,我们提出了一种多级特征融合网络,该网络充分利用各种特征表示及其互补性,以有效地描述神经元形态并提高性能。具体来说,我们设计了一个多级融合模块(MLFM),并将其纳入每个特征提取块中。它可以促进不同特征之间的交互,并在多个级别上实现有效的特征融合。MLFM包括一个基于通道注意力的特征增强模块(FEM)和一个基于交叉注意力的特征交互模块(FIM)。FEM用于增强稳健的形态特征表示,而FIM挖掘并在不同特征表示之间传播互补信息。通过这种方式,我们的特征融合网络最终产生了一个比任何单一形态表示更具特色的神经元形态描述符,能够有效地表征神经元。实验结果表明,我们的方法有效地描绘了神经元形态,并在NeuronMorpho-10数据集上以95.18%的准确率正确分类了10种类型的神经元,优于其他方法。此外,我们的方法在NeuronMorpho-12和NeuronMorpho-17数据集上表现良好,具有良好的泛化能力。