Suppr超能文献

用于骨组织工程的京尼平交联和褐藻酸钠吸附纳米羟基磷灰石/羟丙基壳聚糖复合支架的研制。

Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering.

机构信息

School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Department of orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan.

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.

出版信息

Int J Biol Macromol. 2019 May 1;128:973-984. doi: 10.1016/j.ijbiomac.2019.02.010. Epub 2019 Feb 8.

Abstract

Hydroxypropyl chitosan (HPCS) has recently attracted increasing attention in biomedical applications because it has enhanced water solubility, excellent biocompatibility, and better antioxidant and antibacterial activities compared with chitosan. However, HPCS doesn't meet the mechanical strength requirement in bone tissue engineering and is not suitable for cell adhesion and growth because of its hydrophilic nature and low crystallinity. In this study, nano-scaled hydroxyapatite (n-HA) and HPCS were synthesized, respectively, and then n-HA/HPCS nanocomposite scaffolds were developed by incorporating n-HA into HPCS matrix accompanied with crosslinking of HPCS by a naturally occurring compound, genipin (GP), which in turn greatly altered the hydrophilicity and mechanical properties. The nanocomposite scaffolds showed an open structure with interconnected pores and a rough morphology with n-HA inserted in the GP-crosslinked HPCS matrix. The porosity, swelling capacity, compressive strength, fluorescence emission and degradation rate can be regulated by varying GP concentrations and n-HA contents. An osteoconductive and osteogenic marine algae polysaccharide, fucoidan, was further adsorbed to the composite scaffolds via electrostatic interactions. Incorporation of n-HA and adsorption of FD into the composite scaffolds increased ALP activity in 7F2 osteoblast cells and promoted their mineralization. The FD-adsorbed n-HA/HPCS composite scaffolds can be a potential biomaterial for BTE applications.

摘要

羟丙基壳聚糖(HPCS)由于其具有较高的水溶性、良好的生物相容性和抗氧化、抗菌活性,在生物医学领域得到了广泛的关注。然而,与壳聚糖相比,HPCS 的机械强度较低,亲水性较强,结晶度较低,无法满足骨组织工程的力学要求,也不利于细胞黏附和生长。本研究分别合成纳米级羟基磷灰石(n-HA)和 HPCS,然后通过将 n-HA 掺入 HPCS 基质中,并通过一种天然化合物京尼平(GP)交联 HPCS,制备了 n-HA/HPCS 纳米复合材料支架,从而极大地改变了其亲水性和机械性能。纳米复合材料支架具有开放的结构,具有相互连通的孔和粗糙的形态,n-HA 插入到 GP 交联的 HPCS 基质中。通过改变 GP 浓度和 n-HA 含量,可以调节多孔支架的孔隙率、溶胀能力、压缩强度、荧光发射和降解率。进一步通过静电相互作用将具有骨诱导和骨生成作用的海洋藻类多糖岩藻聚糖吸附到复合支架上。将 n-HA 和 FD 掺入到复合支架中,增加了 7F2 成骨细胞中的碱性磷酸酶(ALP)活性,并促进了其矿化。吸附 FD 的 n-HA/HPCS 复合支架有望成为 BTE 应用的潜在生物材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验