Suppr超能文献

基于模型的迭代重建算法改善低对比浓度儿童胸部 CT 图像质量。

Improving image quality with model-based iterative reconstruction algorithm for chest CT in children with reduced contrast concentration.

机构信息

Department of Radiology, Imaging Center, Beijing Children's Hospital, Capital Medical University, No. 56, Nanlishi Road, Xicheng District, Beijing, 100045, China.

Department of Radiology, Tokyo Women's Medical University & Medical Center East, Tokyo, 116-8567, Japan.

出版信息

Radiol Med. 2019 Jul;124(7):595-601. doi: 10.1007/s11547-019-00995-0. Epub 2019 Feb 9.

Abstract

OBJECTIVE

To evaluate model-based iterative reconstruction (MBIR) in improving the image quality of chest CT in children with reduced concentration contrast medium (CM).

METHODS

Fifty-six children (median age of 4 years) who received low-dose enhanced chest CT were enrolled as the study group and compared with the control group of 56 children. Both groups used the automatic tube current modulation to achieve age-based noise index values of 11-15 HU. The study group used 100 kVp and reduced CM concentration of 270 mgI/ml, and the images in this group were reconstructed with 50% adaptive statistical iterative reconstruction (ASIR) and MBIR. The control group used 120 kV and standard CM of 320 mgI/ml, and the images in this group were reconstructed with ASIR only. Subjective image quality and objective image quality of the three image sets were evaluated. The subjective quality included overall image noise, enhancement degree, lesion (including mediastinum mass, pulmonary space-occupying lesions, and parenchymal infiltrative lesions) conspicuity, and beam-hardening artifacts. The objective quality included the measurement of noise in the left ventricle and back muscle to calculate signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of ventricle.

RESULTS

There was no difference in radiation dose between the study (CTDIvol of 1.79 ± 1.45 mGy) and control (1.68 ± 0.92 mGy) groups (p = 0.65). However, the study group used 19.7% lower CM dose than the control group (5.84 ± 2.69 vs. 7.27 ± 3.80 gI), and the enhancement in all images met the diagnostic requirements. MBIR reduced image noise by 58.6% and increased SNR and CNR by 143.6% and 165.7%, respectively, compared to ASIR images in the control group. The two ASIR image sets had similar image quality.

CONCLUSION

MBIR improved the image quality of low-radiation-dose chest CT in children at 19.3% reduced CM dose.

摘要

目的

评估基于模型的迭代重建(MBIR)在降低对比剂浓度(CM)的儿童胸部 CT 中改善图像质量的效果。

方法

本研究纳入了 56 名(中位年龄 4 岁)接受低剂量增强胸部 CT 的患儿作为研究组,并与 56 名患儿的对照组进行比较。两组均采用自动管电流调制,以实现基于年龄的噪声指数值为 11-15 HU。研究组使用 100 kVp 和降低至 270 mgI/ml 的 CM 浓度,该组的图像采用 50%自适应统计迭代重建(ASIR)和 MBIR 进行重建。对照组使用 120 kV 和标准的 320 mgI/ml CM,该组的图像仅采用 ASIR 进行重建。评估了三组图像的主观图像质量和客观图像质量。主观质量包括整体图像噪声、增强程度、病变(包括纵隔肿块、肺部占位性病变和肺实质浸润性病变)的显示程度和束硬化伪影。客观质量包括测量左心室和背部肌肉的噪声,以计算心室的信噪比(SNR)和对比噪声比(CNR)。

结果

研究组(CTDIvol 为 1.79±1.45 mGy)和对照组(1.68±0.92 mGy)的辐射剂量无差异(p=0.65)。然而,研究组比对照组使用的 CM 剂量低 19.7%(5.84±2.69 与 7.27±3.80 gI),且所有图像的增强均符合诊断要求。与对照组的 ASIR 图像相比,MBIR 降低了 58.6%的图像噪声,并分别提高了 143.6%和 165.7%的 SNR 和 CNR。两组 ASIR 图像集的图像质量相似。

结论

MBIR 在降低 19.3% CM 剂量的情况下,改善了低辐射剂量儿童胸部 CT 的图像质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验