Suppr超能文献

新一代自适应统计迭代重建技术(ASIR-V)在胸部CT中降噪潜力及图像质量改善的评估

Assessment of noise reduction potential and image quality improvement of a new generation adaptive statistical iterative reconstruction (ASIR-V) in chest CT.

作者信息

Tang Hui, Yu Nan, Jia Yongjun, Yu Yong, Duan Haifeng, Han Dong, Ma Guangming, Ren Chenglong, He Taiping

机构信息

1 College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China.

2 Department of Radiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China.

出版信息

Br J Radiol. 2018 Jan;91(1081):20170521. doi: 10.1259/bjr.20170521. Epub 2017 Nov 16.

Abstract

OBJECTIVE

To evaluate the image quality improvement and noise reduction in routine dose, non-enhanced chest CT imaging by using a new generation adaptive statistical iterative reconstruction (ASIR-V) in comparison with ASIR algorithm.

METHODS

30 patients who underwent routine dose, non-enhanced chest CT using GE Discovery CT750HU (GE Healthcare, Waukesha, WI) were included. The scan parameters included tube voltage of 120 kVp, automatic tube current modulation to obtain a noise index of 14HU, rotation speed of 0.6 s, pitch of 1.375:1 and slice thickness of 5 mm. After scanning, all scans were reconstructed with the recommended level of 40%ASIR for comparison purpose and different percentages of ASIR-V from 10% to 100% in a 10% increment. The CT attenuation values and SD of the subcutaneous fat, back muscle and descending aorta were measured at the level of tracheal carina of all reconstructed images. The signal-to-noise ratio (SNR) was calculated with SD representing image noise. The subjective image quality was independently evaluated by two experienced radiologists.

RESULTS

For all ASIR-V images, the objective image noise (SD) of fat, muscle and aorta decreased and SNR increased along with increasing ASIR-V percentage. The SD of 30% ASIR-V to 100% ASIR-V was significantly lower than that of 40% ASIR (p < 0.05). In terms of subjective image evaluation, all ASIR-V reconstructions had good diagnostic acceptability. However, the 50% ASIR-V to 70% ASIR-V series showed significantly superior visibility of small structures when compared with the 40% ASIR and ASIR-V of other percentages (p < 0.05), and 60% ASIR-V was the best series of all ASIR-V images, with a highest subjective image quality. The image sharpness was significantly decreased in images reconstructed by 80% ASIR-V and higher.

CONCLUSION

In routine dose, non-enhanced chest CT, ASIR-V shows greater potential in reducing image noise and artefacts and maintaining image sharpness when compared to the recommended level of 40%ASIR algorithm. Combining both the objective and subjective evaluation of images, non-enhanced chest CT images reconstructed with 60% ASIR-V have the highest image quality. Advances in knowledge: This is the first clinical study to evaluate the clinical value of ASIR-V in the same patients using the same CT scanner in the non-enhanced chest CT scans. It suggests that ASIR-V provides the better image quality and higher diagnostic confidence in comparison with ASIR algorithm.

摘要

目的

通过使用新一代自适应统计迭代重建技术(ASIR-V)与ASIR算法相比较,评估常规剂量非增强胸部CT成像的图像质量改善和噪声降低情况。

方法

纳入30例使用GE Discovery CT750HU(GE医疗,沃基沙,威斯康星州)进行常规剂量非增强胸部CT检查的患者。扫描参数包括管电压120 kVp、自动管电流调制以获得噪声指数14HU、旋转速度0.6秒、螺距1.375:1以及层厚5毫米。扫描后,所有扫描图像均采用推荐的40%ASIR水平进行重建用于比较,并以10%的增量重建不同百分比(10%至100%)的ASIR-V图像。在所有重建图像的气管隆突水平测量皮下脂肪、背部肌肉和降主动脉的CT衰减值及标准差。以标准差代表图像噪声计算信噪比(SNR)。由两名经验丰富的放射科医生独立评估主观图像质量。

结果

对于所有ASIR-V图像,随着ASIR-V百分比的增加,脂肪、肌肉和主动脉的客观图像噪声(标准差)降低,SNR增加。30% ASIR-V至100% ASIR-V的标准差显著低于40% ASIR的标准差(p < 0.05)。在主观图像评估方面,所有ASIR-V重建图像均具有良好的诊断可接受性。然而,与40% ASIR和其他百分比的ASIR-V相比,50% ASIR-V至70% ASIR-V系列在小结构的可见性方面显著更优(p < 0.05),且60% ASIR-V是所有ASIR-V图像中最佳的系列,主观图像质量最高。80% ASIR-V及更高比例重建的图像清晰度显著降低。

结论

在常规剂量非增强胸部CT中,与推荐的40%ASIR算法水平相比,ASIR-V在降低图像噪声和伪影以及保持图像清晰度方面显示出更大潜力。综合图像的客观和主观评估,60% ASIR-V重建的非增强胸部CT图像质量最高。知识进展:这是第一项在相同患者中使用同一台CT扫描仪对非增强胸部CT扫描中ASIR-V的临床价值进行评估的临床研究。结果表明,与ASIR算法相比,ASIR-V提供了更好的图像质量和更高的诊断置信度。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验