Suppr超能文献

起初是词语:术语如何驱动我们对内共生细胞器的理解。

In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles.

作者信息

Oborník Miroslav

机构信息

Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic.

University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.

出版信息

Microb Cell. 2019 Jan 21;6(2):134-141. doi: 10.15698/mic2019.02.669.

Abstract

The names we give objects of research, to some extent, predispose our ways of thinking about them. Misclassifications of Oomycota, Microsporidia, Myxosporidia, and Helicosporidia have obviously affected not only their formal taxonomic names, but also the methods and approaches with which they have been investigated. Therefore, it is important to name biological entities with accurate terms in order to avoid discrepancies in researching them. The endosymbiotic origin of mitochondria and plastids is now the most accepted scenario for their evolution. Since it is apparent that there is no natural definitive border between bacteria and semiautonomous organelles, I propose that mitochondria and plastids should be called bacteria and classified accordingly, in the bacterial classification system. I discuss some consequences of this approach, including: i) the resulting "changes" in the abundances of bacteria, ii) the definitions of terms like microbiome or multicellularity, and iii) the concept of endosymbiotic domestication.

摘要

我们赋予研究对象的名称在一定程度上预先决定了我们思考它们的方式。卵菌纲、微孢子虫纲、粘孢子虫纲和螺旋孢子虫纲的错误分类显然不仅影响了它们的正式分类名称,还影响了研究它们的方法和途径。因此,用准确的术语命名生物实体以避免研究中的差异很重要。线粒体和质体的内共生起源现在是它们进化最被接受的假说。由于细菌和半自主细胞器之间显然没有天然的明确界限,我提议线粒体和质体应被称为细菌,并在细菌分类系统中相应地进行分类。我讨论了这种方法的一些后果,包括:i)细菌丰度的“变化”,ii)微生物组或多细胞性等术语的定义,以及iii)内共生驯化的概念。

相似文献

1
In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles.
Microb Cell. 2019 Jan 21;6(2):134-141. doi: 10.15698/mic2019.02.669.
2
What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts.
Microb Cell. 2019 Jan 21;6(2):123-133. doi: 10.15698/mic2019.02.668.
3
Physiology, anaerobes, and the origin of mitosing cells 50 years on.
J Theor Biol. 2017 Dec 7;434:2-10. doi: 10.1016/j.jtbi.2017.01.004. Epub 2017 Jan 11.
4
How do endosymbionts become organelles? Understanding early events in plastid evolution.
Bioessays. 2007 Dec;29(12):1239-46. doi: 10.1002/bies.20671.
5
The cellular machineries responsible for the division of endosymbiotic organelles.
J Plant Res. 2018 Sep;131(5):727-734. doi: 10.1007/s10265-018-1050-9. Epub 2018 Jun 12.
6
The endosymbiotic origin, diversification and fate of plastids.
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103.
7
Endosymbiosis, cell evolution, and speciation.
Theory Biosci. 2005 Aug;124(1):1-24. doi: 10.1016/j.thbio.2005.04.001. Epub 2005 Jun 1.
8
Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10139-46. doi: 10.1073/pnas.1421385112. Epub 2015 Mar 2.
9
Endosymbiosis and Eukaryotic Cell Evolution.
Curr Biol. 2015 Oct 5;25(19):R911-21. doi: 10.1016/j.cub.2015.07.055.
10
Origin and evolution of organelle genomes.
Curr Opin Genet Dev. 1993 Dec;3(6):884-90. doi: 10.1016/0959-437x(93)90009-e.

引用本文的文献

1
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events.
Methods Mol Biol. 2024;2776:21-41. doi: 10.1007/978-1-0716-3726-5_2.
2
Organellar Evolution: A Path from Benefit to Dependence.
Microorganisms. 2022 Jan 7;10(1):122. doi: 10.3390/microorganisms10010122.
3
Do mutualistic interactions last longer than antagonistic interactions?
Proc Biol Sci. 2021 Sep 8;288(1958):20211457. doi: 10.1098/rspb.2021.1457.
4
Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism.
Biomolecules. 2019 Jul 8;9(7):266. doi: 10.3390/biom9070266.
6
What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts.
Microb Cell. 2019 Jan 21;6(2):123-133. doi: 10.15698/mic2019.02.668.

本文引用的文献

1
What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts.
Microb Cell. 2019 Jan 21;6(2):123-133. doi: 10.15698/mic2019.02.668.
2
Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom.
Science. 2018 Sep 28;361(6409):1356-1358. doi: 10.1126/science.aau0382.
3
Deep mitochondrial origin outside the sampled alphaproteobacteria.
Nature. 2018 May;557(7703):101-105. doi: 10.1038/s41586-018-0059-5. Epub 2018 Apr 25.
4
Deciphering the nature of the coral-Chromera association.
ISME J. 2018 Mar;12(3):776-790. doi: 10.1038/s41396-017-0005-9. Epub 2018 Jan 10.
5
Mitochondrial Transfer in the Leukemia Microenvironment.
Trends Cancer. 2017 Dec;3(12):828-839. doi: 10.1016/j.trecan.2017.10.003. Epub 2017 Nov 6.
6
Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora.
Curr Biol. 2017 Sep 25;27(18):2763-2773.e5. doi: 10.1016/j.cub.2017.08.010. Epub 2017 Sep 7.
7
Endosymbiosis: The feeling is not mutual.
J Theor Biol. 2017 Dec 7;434:75-79. doi: 10.1016/j.jtbi.2017.06.008. Epub 2017 Jun 15.
8
How Really Ancient Is Paulinella Chromatophora?
PLoS Curr. 2016 Mar 15;8:ecurrents.tol.e68a099364bb1a1e129a17b4e06b0c6b. doi: 10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b.
9
Lysogeny in nature: mechanisms, impact and ecology of temperate phages.
ISME J. 2017 Jul;11(7):1511-1520. doi: 10.1038/ismej.2017.16. Epub 2017 Mar 14.
10
Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement.
PLoS One. 2016 Nov 18;11(11):e0166338. doi: 10.1371/journal.pone.0166338. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验