Suppr超能文献

基于多元信息测度的单细胞数据基因调控网络推断

Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures.

机构信息

Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.

Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, London W12 0NN, UK.

出版信息

Cell Syst. 2017 Sep 27;5(3):251-267.e3. doi: 10.1016/j.cels.2017.08.014.

Abstract

While single-cell gene expression experiments present new challenges for data processing, the cell-to-cell variability observed also reveals statistical relationships that can be used by information theory. Here, we use multivariate information theory to explore the statistical dependencies between triplets of genes in single-cell gene expression datasets. We develop PIDC, a fast, efficient algorithm that uses partial information decomposition (PID) to identify regulatory relationships between genes. We thoroughly evaluate the performance of our algorithm and demonstrate that the higher-order information captured by PIDC allows it to outperform pairwise mutual information-based algorithms when recovering true relationships present in simulated data. We also infer gene regulatory networks from three experimental single-cell datasets and illustrate how network context, choices made during analysis, and sources of variability affect network inference. PIDC tutorials and open-source software for estimating PID are available. PIDC should facilitate the identification of putative functional relationships and mechanistic hypotheses from single-cell transcriptomic data.

摘要

单细胞基因表达实验为数据处理带来了新的挑战,但观察到的细胞间变异性也揭示了可以被信息论利用的统计关系。在这里,我们使用多元信息论来探索单细胞基因表达数据集三基因对之间的统计依赖性。我们开发了 PIDC,这是一种快速、高效的算法,使用偏信息分解 (PID) 来识别基因之间的调控关系。我们彻底评估了我们算法的性能,并证明了当从模拟数据中恢复真实关系时,PIDC 捕获的更高阶信息使其能够优于基于成对互信息的算法。我们还从三个实验单细胞数据集推断基因调控网络,并说明网络上下文、分析过程中的选择以及变异性来源如何影响网络推断。PIDC 的教程和用于估计 PID 的开源软件可用于下载。PIDC 应该有助于从单细胞转录组数据中识别可能的功能关系和机制假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68e/5624513/0e5fe6a33485/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验