School of Chemistry, Faculty of Exact Sciences , Tel Aviv University , Tel Aviv 69978 , Israel.
Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel.
Nano Lett. 2019 Mar 13;19(3):1944-1954. doi: 10.1021/acs.nanolett.8b05127. Epub 2019 Feb 14.
Here, we report on the large-scale one-step preparation, characterization, and application of three-dimensional spongelike silicon alloy composite anodes, based on the catalyst-free growth of porous silicon nanonetworks directly onto highly conductive and flexible open-structure stainless steel current collectors. By the use of a key hydrofluoric-acid-based chemical pretreatment process, the originally noncatalytic stainless steel matrix becomes nanoporous and highly self-catalytic, thus greatly promoting the formation of a silicon spongelike network at unexpectedly low growth temperatures, 380-460 °C. Modulation of this unique chemical pretreatment allows control over the morphology and loading properties of the resulting silicon network. The spongelike silicon network growth is capable of completely filling the openings of the three-dimensional stainless steel substrates, thus allowing full control over the active material loading, while conserving high mechanical and chemical stabilities. Furthermore, extremely high silicon loadings are reached because of the supercatalytic nanoporous nature of the chemically treated stainless steel substrates (0.5-20 mg/cm). This approach leads to the realization of highly electrically conductive Si-stainless steel composite anodes, due to the formation of silicon-network-to-stainless-steel contact sections composed of highly conductive metal silicide alloys, thus improving the electrical interface and mechanical stability between the silicon active network and the highly conductive metal current collector. More importantly, our one-step cost-effective growth approach allows the large-scale preparation of highly homogeneous ultrathin binder-free anodes, up to 2 m long, using a home-built CVD setup. Finally, we made use of these novel anodes for the assembly of Li-ion batteries exhibiting stable cycle life (cycled for over 500 cycles with <50% capacity loss at 0.1 mA), high gravimetric capacity (>3500 mA h/g at 0.1 mA/cm), low irreversible capacity (<10%), and high Coulombic efficiency (>99.5%). Notably, these Si spongelike composite anodes of novel architecture meet the requirements of lithium batteries for future portable and electric-vehicle applications.
在这里,我们报告了一种基于无催化剂多孔硅纳米网络直接生长在高导电性和柔性开放式不锈钢集流体上的三维海绵状硅合金复合负极的大规模一步法制备、表征和应用。通过使用关键的基于氢氟酸的化学预处理工艺,原本非催化的不锈钢基体变得具有纳米多孔性和高度自催化性,从而在出乎意料的低生长温度(380-460°C)下极大地促进了硅海绵状网络的形成。这种独特的化学预处理的调制可以控制所得硅网络的形态和负载特性。海绵状硅网络的生长能够完全填充三维不锈钢基底的开口,从而可以完全控制活性材料的负载,同时保持高的机械和化学稳定性。此外,由于经过化学处理的不锈钢基底具有超催化纳米多孔性,因此可以达到极高的硅负载量(0.5-20mg/cm)。这种方法导致了高度导电的 Si-不锈钢复合负极的实现,这是由于形成了由高导电性金属硅化物合金组成的硅网络-不锈钢接触部分,从而改善了硅活性网络与高导电性金属集流体之间的电接口和机械稳定性。更重要的是,我们的一步式具有成本效益的生长方法允许使用自制的 CVD 设备大规模制备高度均匀的超薄无粘结剂负极,长度可达 2m。最后,我们利用这些新型负极组装了锂离子电池,其循环寿命稳定(在 0.1mA 下循环超过 500 次,容量损失小于 50%),比容量高(在 0.1mA/cm 下大于 3500mAh/g),不可逆容量低(<10%),库仑效率高(>99.5%)。值得注意的是,这些具有新型结构的硅海绵状复合负极满足了未来便携式和电动汽车应用的锂离子电池的要求。