Suppr超能文献

三维整体自生长金属氧化物高致密纳米网络作为用于锂离子电池的独立式高容量阳极

Three-Dimensional Monolithically Self-Grown Metal Oxide Highly Dense Nanonetworks as Free-Standing High-Capacity Anodes for Lithium-Ion Batteries.

作者信息

Cohen Adam, Harpak Nimrod, Juhl Yonatan, Shekhter Pini, Remennik Sergei, Patolsky Fernando

机构信息

Department of Materials Science and Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

ACS Appl Mater Interfaces. 2022 Jun 29;14(25):28911-28923. doi: 10.1021/acsami.2c05902. Epub 2022 Jun 14.

Abstract

Transition metal oxides (TMOs) have been widely studied as potential next-generation anode materials, owing to their high theoretical gravimetric capacity. However, to date, these anodes syntheses are plagued with time-consuming preparation processes, two-dimensional electrode fabrication, binder requirements, and short operational cycling lives. Here, we present a scalable single-step reagentless process for the synthesis of highly dense MnO-based nanonetwork anodes based on a simple thermal treatment transformation of low-grade steel substrates. The monolithic solid-state chemical self-transformation of the steel substrate results in a highly dense forest of MnO nanowires, which transforms the electrochemically inactive steel substrate into an electrochemically highly active anode. The proposed method, beyond greatly improving the current TMO performance, surpasses state-of-the-art commercial silicon anodes in terms of capacity and stability. The three-dimensional self-standing anode exhibits remarkably high capacities (>1500 mA h/g), a stable cycle life (>650 cycles), high Coulombic efficiencies (>99.5%), fast rate performance (>1.5 C), and high areal capacities (>2.5 mA h/cm). This novel experimental paradigm acts as a milestone for next-generation anode materials in lithium-ion batteries, and pioneers a universal method to transform different kinds of widely available, low-cost, steel substrates into electrochemically active, free-standing anodes and allows for the massive reduction of anode production complexity and costs.

摘要

过渡金属氧化物(TMOs)因其高理论比容量而被广泛研究作为潜在的下一代负极材料。然而,迄今为止,这些负极的合成存在制备过程耗时、二维电极制造、需要粘结剂以及循环使用寿命短等问题。在此,我们基于对低品位钢基底的简单热处理转变,提出了一种可扩展的无试剂单步工艺来合成高密度MnO基纳米网络负极。钢基底的整体固态化学自转变产生了高密度的MnO纳米线森林,将电化学惰性的钢基底转变为电化学高活性的负极。所提出的方法不仅大大改善了当前TMO的性能,在容量和稳定性方面还超越了最先进的商业硅负极。这种三维自立式负极表现出极高的容量(>1500 mA h/g)、稳定的循环寿命(>650次循环)、高库仑效率(>99.5%)、快速倍率性能(>1.5 C)以及高面积容量(>2.5 mA h/cm)。这种新颖的实验范式是锂离子电池下一代负极材料的一个里程碑,并开创了一种通用方法,可将各种广泛可用的低成本钢基底转变为电化学活性的自立式负极,从而大幅降低负极生产的复杂性和成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27ec/9247978/0a8afa7d512a/am2c05902_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验