Suppr超能文献

面向物联网的二进制 Edwards 曲线的能量/面积高效标量乘法。

Energy/Area-Efficient Scalar Multiplication with Binary Edwards Curves for the IoT.

机构信息

CINVESTAV Tamaulipas, Victoria 87130, Mexico.

CINVESTAV Guadalajara, Zapopan 45019, Mexico.

出版信息

Sensors (Basel). 2019 Feb 10;19(3):720. doi: 10.3390/s19030720.

Abstract

Making Elliptic Curve Cryptography (ECC) available for the Internet of Things (IoT) and related technologies is a recent topic of interest. Modern IoT applications transfer sensitive information which needs to be protected. This is a difficult task due to the processing power and memory availability constraints of the physical devices. ECC mainly relies on scalar multiplication ()-which is an operation-intensive procedure. The broad majority of proposals in the literature focus on performance improvements and often overlook the energy footprint of the solution. Some IoT technologies-Wireless Sensor Networks (WSN) in particular-are critically sensitive in that regard. In this paper we explore energy-oriented improvements applied to a low-area scalar multiplication architecture for Binary Edwards Curves (BEC)-selected given their efficiency. The design and implementation costs for each of these energy-oriented techniques-in hardware-are reported. We propose an evaluation method for measuring the effectiveness of these optimizations. Under this novel approach, the energy-reducing techniques explored in this work contribute to achieving the scalar multiplication architecture with the most efficient area/energy trade-offs in the literature, to the best of our knowledge.

摘要

将椭圆曲线密码学(ECC)应用于物联网(IoT)和相关技术是最近备受关注的话题。现代物联网应用程序传输需要保护的敏感信息。由于物理设备的处理能力和内存可用性的限制,这是一项艰巨的任务。ECC 主要依赖于标量乘法(),这是一个计算密集型的过程。文献中的大多数提案都侧重于性能改进,并且往往忽略了解决方案的能源足迹。一些物联网技术,特别是无线传感器网络(WSN),在这方面非常敏感。在本文中,我们探讨了针对二进制爱德华曲线(BEC)的低面积标量乘法架构应用的面向能量的改进,这是基于它们的效率而选择的。针对每种基于能量的技术(在硬件中)报告了其设计和实施成本。我们提出了一种评估方法来衡量这些优化的效果。根据这种新方法,在这项工作中探索的节能技术有助于在文献中实现具有最高效率的面积/能量折衷的标量乘法架构,据我们所知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fb2/6387331/d2b8888c9429/sensors-19-00720-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验