Suppr超能文献

利用人源化肝脏嵌合小鼠预测长半衰期化合物的人体药代动力学。

Prediction of human pharmacokinetics of long half-life compounds using chimeric mice with humanised liver.

作者信息

Miyamoto Maki, Iwasaki Shinji, Chisaki Ikumi, Nakagawa Sayaka, Amano Nobuyuki, Kosugi Yohei, Hirabayashi Hideki

机构信息

Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan.

出版信息

Xenobiotica. 2019 Dec;49(12):1379-1387. doi: 10.1080/00498254.2019.1579394. Epub 2019 Mar 18.

Abstract
  1. The prediction of human pharmacokinetic (PK) parameters is an important theme to select drug candidates from preclinical studies. It is essential to improve the prediction accuracy of compound half-life () in humans. In this study, the predictability of in humans using PXB mice®, chimeric mice with humanised liver, was assessed using 14 compounds showing long in humans. 2. After intravenous administration of the compounds to PXB mice, the plasma concentration-time profiles were fitted using one- or two-compartment models and the human clearance (CL) and distribution volume (Vd) were predicted from single-species scaling. Using the obtained parameters, the in humans was predicted. Using PXB mice, the predicted values of 71.4% of the compounds were within two-fold of the actual values. Meanwhile, based on predictions using SCID mice, the host strain of the PXB mice, only 7.1% of tested compounds were within two-fold. 3. In conclusion, we demonstrated the novel utility of PXB mice for human PK predictions of compounds having long in humans.
摘要
  1. 预测人体药代动力学(PK)参数是从临床前研究中筛选候选药物的一个重要课题。提高化合物在人体中的半衰期()预测准确性至关重要。在本研究中,使用14种在人体中显示出长半衰期的化合物,评估了使用PXB小鼠®(具有人源化肝脏的嵌合小鼠)预测人体半衰期的能力。2. 将化合物静脉注射到PXB小鼠体内后,使用一室或二室模型拟合血浆浓度-时间曲线,并通过单物种标度预测人体清除率(CL)和分布容积(Vd)。利用获得的参数预测人体中的半衰期。使用PXB小鼠时,71.4%的化合物预测半衰期值在实际值的两倍以内。同时,基于使用PXB小鼠的宿主品系SCID小鼠的预测,只有7.1%的受试化合物在实际值的两倍以内。3. 总之,我们证明了PXB小鼠在预测人体中具有长半衰期的化合物的人体PK方面的新用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验