Suppr超能文献

工程化硫链丝菌中非常规四环素的形成以生产修饰的 Chelocardin 抗生素。

Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics.

机构信息

Department of Microbial Natural Products , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Campus E8.1 , 66123 Saarbrücken , Germany.

German Centre for Infection Research (DZIF) , Partner site Hannover-Braunschweig , 38124 Braunschweig , Germany.

出版信息

ACS Chem Biol. 2019 Mar 15;14(3):468-477. doi: 10.1021/acschembio.8b01125. Epub 2019 Feb 12.

Abstract

To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.

摘要

为了应对抗菌药物耐药性的不断蔓延和新型抗感染药物的短缺,开发新型抗生素的一种策略是优化已知的化学结构骨架。在这里,我们专注于优化阿美霉素链霉菌的生物合成工程,以衍生非典型四环素金霉素及其强效广谱衍生物 2-羧酰胺基-2-去乙酰金霉素。我们将异源生物合成基因引入到该金霉素产生菌中,以修饰功能基团并产生新的衍生物。我们证明了金霉素聚酮合酶与参与从玫瑰色链霉菌生物合成土霉素的修饰酶的合作。与土霉素相比,金霉素的一个有趣特征是 C4 氨基的立体化学相反。我们在缺乏 C4-转氨酶的阿美霉素链霉菌突变体中异源表达了参与土霉素 C4 转氨和 N,N-二甲基化的基因。只有当土霉素的氨基转移酶与 N-甲基转移酶 OxyT 共表达时,才会产生 C4 氨基具有相反立体化学的金霉素衍生物,如 N,N-二甲基-epi-金霉素和 N,N-二甲基-2-羧酰胺基-2-去乙酰-epi-金霉素。令人惊讶的是,OxyT 仅接受金霉素中 C4 上带有 S 构型氨基的中间产物。应用药物化学方法,我们产生了几种 C4 修饰的 2-羧酰胺基-2-去乙酰-epi-金霉素衍生物。对修饰化合物的抗菌活性分析表明,R 构型的仲胺是金霉素活性的关键结构特征。出乎意料的是,我们鉴定出了 C10 糖基化的金霉素类似物,从而揭示了阿美霉素链霉菌的糖基化潜力。然而,只有在 C4 位的二甲氨基被修饰为相反的 S 构型后,金霉素的骨架才能有效地进行糖基化,这表明金霉素糖基化的一些进化痕迹仍然存在。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验