Intellegens , Eagle Labs , Chesterton Road , Cambridge CB4 3AZ , United Kingdom.
Optibrium , F5-6 Blenheim House, Cambridge Innovation Park, Denny End Road , Cambridge CB25 9PB , United Kingdom.
J Chem Inf Model. 2019 Mar 25;59(3):1197-1204. doi: 10.1021/acs.jcim.8b00768. Epub 2019 Feb 21.
We describe a novel deep learning neural network method and its application to impute assay pIC values. Unlike conventional machine learning approaches, this method is trained on sparse bioactivity data as input, typical of that found in public and commercial databases, enabling it to learn directly from correlations between activities measured in different assays. In two case studies on public domain data sets we show that the neural network method outperforms traditional quantitative structure-activity relationship (QSAR) models and other leading approaches. Furthermore, by focusing on only the most confident predictions the accuracy is increased to R > 0.9 using our method, as compared to R = 0.44 when reporting all predictions.
我们描述了一种新颖的深度学习神经网络方法及其在填补测定 pIC 值方面的应用。与传统的机器学习方法不同,该方法以稀疏的生物活性数据作为输入进行训练,这是公共和商业数据库中常见的情况,使它能够直接从不同测定中测量的活性之间的相关性中学习。在两个公共领域数据集的案例研究中,我们表明该神经网络方法优于传统的定量构效关系 (QSAR) 模型和其他领先方法。此外,通过仅关注最有信心的预测,与报告所有预测时的 R = 0.44 相比,我们的方法将准确性提高到 R > 0.9。