Suppr超能文献

基于药物-miRNA 关联的计算机药物重定位。

In silico drug repositioning based on drug-miRNA associations.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, P. R. China.

Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China.

出版信息

Brief Bioinform. 2020 Mar 23;21(2):498-510. doi: 10.1093/bib/bbz012.

Abstract

Drug repositioning has become a prevailing tactic as this strategy is efficient, economical and low risk for drug discovery. Meanwhile, recent studies have confirmed that small-molecule drugs can modulate the expression of disease-related miRNAs, which indicates that miRNAs are promising therapeutic targets for complex diseases. In this study, we put forward and verified the hypothesis that drugs with similar miRNA profiles may share similar therapeutic properties. Furthermore, a comprehensive drug-drug interaction network was constructed based on curated drug-miRNA associations. Through random network comparison, topological structure analysis and network module extraction, we found that the closely linked drugs in the network tend to treat the same diseases. Additionally, the curated drug-disease relationships (from the CTD) and random walk with restarts algorithm were utilized on the drug-drug interaction network to identify the potential drugs for a given disease. Both internal validation (leave-one-out cross-validation) and external validation (independent drug-disease data set from the ChEMBL) demonstrated the effectiveness of the proposed approach. Finally, by integrating drug-miRNA and miRNA-disease information, we also explain the modes of action of drugs in the view of miRNA regulation. In summary, our work could determine novel and credible drug indications and offer novel insights and valuable perspectives for drug repositioning.

摘要

药物重定位已成为一种流行策略,因为这种策略在药物发现方面具有高效、经济和低风险的特点。同时,最近的研究证实,小分子药物可以调节与疾病相关的 miRNA 的表达,这表明 miRNA 是复杂疾病有前途的治疗靶点。在本研究中,我们提出并验证了这样一个假设,即具有相似 miRNA 谱的药物可能具有相似的治疗特性。此外,还基于已整理的药物-miRNA 关联构建了一个全面的药物-药物相互作用网络。通过随机网络比较、拓扑结构分析和网络模块提取,我们发现网络中紧密相连的药物往往治疗相同的疾病。此外,还利用已整理的药物-疾病关系(来自 CTD)和重新启动随机游走算法在药物-药物相互作用网络上识别给定疾病的潜在药物。内部验证(留一法交叉验证)和外部验证(来自 ChEMBL 的独立药物-疾病数据集)都证明了所提出方法的有效性。最后,通过整合药物-miRNA 和 miRNA-疾病信息,我们还从 miRNA 调节的角度解释了药物的作用模式。总之,我们的工作可以确定新的、可靠的药物适应症,并为药物重定位提供新的见解和有价值的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验