Dywili Nomxolisi R, Ntziouni Afroditi, Ikpo Chinwe, Ndipingwi Miranda, Hlongwa Ntuthuko W, Yonkeu Anne L D, Masikini Milua, Kordatos Konstantinos, Iwuoha Emmanuel I
SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa.
School of Chemical Engineering, Section I: Chemical Sciences, Lab of Inorganic and Analytical Chemistry, National Technical University of Athens, 9 Heroon Polytechniou Str., 15773 Athens, Greece.
Micromachines (Basel). 2019 Feb 11;10(2):115. doi: 10.3390/mi10020115.
Graphene oxide (GO) decorated with silver (Ag), copper (Cu) or platinum (Pt) nanoparticles that are anchored on dodecylbenzene sulfonic acid (DBSA)-doped polyaniline (PANI) were prepared by a simple one-step method and applied as novel materials for high performance supercapacitors. High-resolution transmission electron microscopy (HRTEM) and high-resolution scanning electron microscopy (HRSEM) analyses revealed that a metal-decorated polymer matrix is embedded within the GO sheet. This caused the M/DBSA⁻PANI (M = Ag, Cu or Pt) particles to adsorb on the surface of the GO sheets, appearing as aggregated dark regions in the HRSEM images. The Fourier transform infrared (FTIR) spectroscopy studies revealed that GO was successfully produced and decorated with Ag, Cu or Pt nanoparticles anchored on DBSA⁻PANI. This was confirmed by the appearance of the GO signature epoxy C⁻O vibration band at 1040 cm (which decreased upon the introduction of metal nanoparticle) and the PANI characteristic N⁻H stretching vibration band at 3144 cm present only in the GO/M/DBSA⁻PANI systems. The composites were tested for their suitability as supercapacitor materials; and specific capacitance values of 206.4, 192.8 and 227.2 F·g were determined for GO/Ag/DBSA⁻PANI, GO/Cu/DBSA⁻PANI and GO/Pt/DBSA⁻PANI, respectively. The GO/Pt/DBSA⁻PANI electrode exhibited the best specific capacitance value of the three electrodes and also had twice the specific capacitance value reported for Graphene/MnO₂//ACN (113.5 F·g). This makes GO/Pt/DBSA⁻PANI a very promising organic supercapacitor material.
通过一种简单的一步法制备了用银(Ag)、铜(Cu)或铂(Pt)纳米颗粒修饰的氧化石墨烯(GO),这些纳米颗粒锚定在十二烷基苯磺酸(DBSA)掺杂的聚苯胺(PANI)上,并将其用作高性能超级电容器的新型材料。高分辨率透射电子显微镜(HRTEM)和高分辨率扫描电子显微镜(HRSEM)分析表明,金属修饰的聚合物基体嵌入在氧化石墨烯片层内。这使得M/DBSA⁻PANI(M = Ag、Cu或Pt)颗粒吸附在氧化石墨烯片层表面,在HRSEM图像中呈现为聚集的暗区。傅里叶变换红外(FTIR)光谱研究表明,成功制备了氧化石墨烯并用锚定在DBSA⁻PANI上的Ag、Cu或Pt纳米颗粒进行了修饰。这通过在1040 cm处出现的氧化石墨烯特征环氧C⁻O振动带(引入金属纳米颗粒后该带减弱)以及仅在GO/M/DBSA⁻PANI体系中出现的在3144 cm处的聚苯胺特征N⁻H伸缩振动带得到证实。对这些复合材料作为超级电容器材料的适用性进行了测试;GO/Ag/DBSA⁻PANI、GO/Cu/DBSA⁻PANI和GO/Pt/DBSA⁻PANI的比电容值分别测定为206.4、192.8和227.2 F·g。GO/Pt/DBSA⁻PANI电极在这三个电极中表现出最佳的比电容值,并且其比电容值是报道的石墨烯/MnO₂//ACN(113.5 F·g)的两倍。这使得GO/Pt/DBSA⁻PANI成为一种非常有前途的有机超级电容器材料。