You Ning, Zhang Chenxi, Liang Yachao, Zhang Qi, Fu Peng, Liu Minying, Zhao Qingxiang, Cui Zhe, Pang Xinchang
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
Engineering Laboratory of High Performance Nylon Engineering Plastics of CPCIF, Zhengzhou University, Zhengzhou, 450001, China.
Sci Rep. 2019 Feb 12;9(1):1869. doi: 10.1038/s41598-018-38039-8.
An unconventional but facile approach to prepare size-tunable core/shell ferroelectric/polymeric nanoparticles with uniform distribution is achieved by metal-free atom transfer radical polymerization (ATRP) driven by visible light under ambient temperature based on novel hyperbranched aromatic polyamides (HBPA) as a functional matrix. Cubic BaTiO/HBPA nanocomposites can be prepared by in-situ polycondensation process with precursors (barium hydroxide (Ba(OH)) and titanium(IV) tetraisopropoxide (TTIP)) of ferroelectric BaTiO nanocrystals, because precursors can be selectively loaded into the domain containing the benzimidazole rings. At 1200 °C, the aromatic polyamide coating of cubic BaTiO nanoparticles are carbonized to form carbon layer in the inert environment, which prevents regular nanoparticles from gathering. In addition, cubic BaTiO nanoparticles are simultaneously transformed into tetragonal BaTiO nanocrystals after high temperature calcination (1200 °C). The outer carbon shell of tetragonal BaTiO nanoparticles is removed via 500 °C calcination in air. Bi-functional ligand can modify the surface of tetragonal BaTiO nanoparticles. PMMA polymeric chains are growing from the initiating sites of ferroelectric BaTiO nanocrystal surface via the metal-free ATRP technique to obtain core/shell ferroelectric BaTiO/PMMA hybrid nanoparticles. Changing the molar ratio between benzimidazole ring units and precursors can tune the size of ferroelectric BaTiO nanoparticles in the process of polycondensation, and the thickness of polymeric shell can be tailored by changing the white LED irradiation time in the organocatalyzed ATRP process. The dielectric properties of core/shell BaTiO/PMMA hybrid nanoparticles can be also tuned by adjusting the dimension of BaTiO core and the molecular weight of PMMA shell.
基于新型超支化芳香族聚酰胺(HBPA)作为功能基质,通过室温下可见光驱动的无金属原子转移自由基聚合(ATRP),实现了一种制备尺寸可调且分布均匀的核/壳铁电/聚合物纳米粒子的非常规但简便的方法。立方相BaTiO₃/HBPA纳米复合材料可通过铁电BaTiO₃纳米晶体的前体(氢氧化钡(Ba(OH)₂)和四异丙醇钛(TTIP))原位缩聚过程制备,因为前体可以选择性地负载到含有苯并咪唑环的区域中。在1200℃下,立方相BaTiO₃纳米粒子的芳香族聚酰胺涂层在惰性环境中碳化形成碳层,这防止了规则纳米粒子的聚集。此外,立方相BaTiO₃纳米粒子在高温煅烧(1200℃)后同时转变为四方相BaTiO₃纳米晶体。四方相BaTiO₃纳米粒子的外碳壳通过在空气中500℃煅烧去除。双功能配体可以修饰四方相BaTiO₃纳米粒子的表面。PMMA聚合物链通过无金属ATRP技术从铁电BaTiO₃纳米晶体表面的引发位点生长,以获得核/壳铁电BaTiO₃/PMMA杂化纳米粒子。在缩聚过程中,改变苯并咪唑环单元与前体之间的摩尔比可以调节铁电BaTiO₃纳米粒子的尺寸,并且在有机催化的ATRP过程中,通过改变白色LED照射时间可以定制聚合物壳的厚度。核/壳BaTiO₃/PMMA杂化纳米粒子的介电性能也可以通过调节BaTiO₃核的尺寸和PMMA壳的分子量来调节。